A Direct Proof for Operator Hardy-Littlewood Maximal Inequality (2024)

\stackMath

Chian Yeong ChuahDepartment of Mathematics
The Ohio State University
231 West 18th Avenue
Columbus, OH 43210-1174, USA
ORCid:0000-0003-3776-6555
chuah.21@osu.edu
,Zhen-Chuan LiuDepartamento de Matemáticas
Universidad Autónoma de Madrid
C/ Francisco Tomás y Valiente, 7 Facultad de Ciencias, módulo 17, 28049 Madrid,Spain.
ORCid: 0000-0002-6092-5473
liu.zhenchuan@uam.es
and Tao MeiDepartment of Mathematics
Baylor University
1301 S University Parks Dr, Waco, TX 76798, USA.
ORCid: 0000-0001-6191-6184
tao_mei@baylor.edu

Abstract.

We give a direct proof of the operator valued Hardy-Littlewood maximal inequality for 2p<2𝑝2\leq p<\infty2 ≤ italic_p < ∞, which was first proved in [7].

Key words and phrases:

Maximal Inequality, Schatten p𝑝pitalic_p-class, von Neumann Algebra, Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-Space

2010 Mathematics Subject Classification:

Primary: 46B28, 46L52. Secondary: 42A45.

1. Introduction

The operator valued Hardy-Littlewood maximal inequality ([7]) has become a basic tool in the study of noncommutative analysis. See e.g. [2, 4, 8] for the recent works which apply this inequality.

The original proof of the inequality contained in [7] reduces the problem to the martingale case where the noncommutative Doob’s maximal inequality due to M. Junge ([5]) is applied. G. Hong reproved this maximal inequality in [3]. He follows Stein’s idea of dominating the Hardy-Littlewood maximal function by maximal averages of heat semigroup operators and applies the noncommutative maximal ergodic theory due to M. Junge and Q. Xu ([6]). Both proofs are indirect which prevent researchers, who are not familiar with the terminology of noncommutative analysis from a good understanding of the theorem. The purpose of this article is to provide a direct and more understandable proof of this inequality for the case p2𝑝2p\geq 2italic_p ≥ 2.

Recall that, for a locally integrable function f𝑓fitalic_f, the Hardy-Littlewood maximal function is defined as

Mf(x)=supt12tI(x,t)|f(y)|𝑑y,𝑀𝑓𝑥subscriptsupremum𝑡12𝑡subscript𝐼𝑥𝑡𝑓𝑦differential-d𝑦Mf(x)=\sup_{t}\frac{1}{2t}\int_{I(x,t)}|f(y)|dy,italic_M italic_f ( italic_x ) = roman_sup start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_I ( italic_x , italic_t ) end_POSTSUBSCRIPT | italic_f ( italic_y ) | italic_d italic_y ,

where I(x,t)𝐼𝑥𝑡I(x,t)italic_I ( italic_x , italic_t ) is the interval centered at x𝑥xitalic_x with length 2t.2𝑡2t.2 italic_t . The classical Hardy-Littlewood maximal inequality states that

(1.1)MfLpcpp1fLp,subscriptnorm𝑀𝑓superscript𝐿𝑝𝑐𝑝𝑝1subscriptnorm𝑓superscript𝐿𝑝\displaystyle\|Mf\|_{L^{p}}\leq c\frac{p}{p-1}\|f\|_{L^{p}},∥ italic_M italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p end_ARG start_ARG italic_p - 1 end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ,

for all fLp(),1<pformulae-sequence𝑓superscript𝐿𝑝1𝑝f\in L^{p}(\mathbb{R}),1<p\leq\inftyitalic_f ∈ italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R ) , 1 < italic_p ≤ ∞.

Let X𝑋Xitalic_X be a Banach space, for X-valued functions f𝑓fitalic_f, their maximal function Mf𝑀𝑓Mfitalic_M italic_f can be defined by considering the maximal function of the norm of f𝑓fitalic_f,

(1.2)Mf(x)=supt12tI(x,t)f(y)X𝑑y.𝑀𝑓𝑥subscriptsupremum𝑡12𝑡subscript𝐼𝑥𝑡subscriptnorm𝑓𝑦𝑋differential-d𝑦\displaystyle Mf(x)=\sup_{t}\frac{1}{2t}\int_{I(x,t)}\|f(y)\|_{X}dy.italic_M italic_f ( italic_x ) = roman_sup start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_I ( italic_x , italic_t ) end_POSTSUBSCRIPT ∥ italic_f ( italic_y ) ∥ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_d italic_y .

Apply the classical Hardy-Littlewood maximal inequality to the Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT function fXsubscriptnorm𝑓𝑋\|f\|_{X}∥ italic_f ∥ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, one obtains that

(1.3)MfLp(X)cpp1fLp(X)=(fXp)1p,subscriptnorm𝑀𝑓superscript𝐿𝑝𝑋𝑐𝑝𝑝1subscriptnorm𝑓superscript𝐿𝑝𝑋superscriptsubscriptsuperscriptsubscriptnorm𝑓𝑋𝑝1𝑝\displaystyle\|Mf\|_{L^{p}(X)}\leq c\frac{p}{p-1}\|f\|_{L^{p}(X)}=(\int_{%\mathbb{R}}\|f\|_{X}^{p})^{\frac{1}{p}},∥ italic_M italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p end_ARG start_ARG italic_p - 1 end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT = ( ∫ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ∥ italic_f ∥ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ,

for all fLp(,X),1<pformulae-sequence𝑓superscript𝐿𝑝𝑋1𝑝f\in L^{p}(\mathbb{R},X),1<p\leq\inftyitalic_f ∈ italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_X ) , 1 < italic_p ≤ ∞. A shortcoming is that this type of maximal function is scalar-valued and may lose a lot of information of X𝑋Xitalic_X that f𝑓fitalic_f originally carried.

When X=Lp(Ω)𝑋superscript𝐿𝑝ΩX=L^{p}(\Omega)italic_X = italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( roman_Ω ) with ΩΩ\Omegaroman_Ω a measurable space, one may define a X𝑋Xitalic_X-valued maximal function F𝐹Fitalic_F as

(1.4)F(x,ω)=12tI(x,t)|f(y,ω)|𝑑y,𝐹𝑥𝜔12𝑡subscript𝐼𝑥𝑡𝑓𝑦𝜔differential-d𝑦\displaystyle F(x,\omega)=\frac{1}{2t}\int_{I(x,t)}|f(y,\omega)|dy,italic_F ( italic_x , italic_ω ) = divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_I ( italic_x , italic_t ) end_POSTSUBSCRIPT | italic_f ( italic_y , italic_ω ) | italic_d italic_y ,

and deduce from (1.3) that

(1.5)FLp(,Lp(Ω))cpp1fLp(,Lp(Ω)).subscriptnorm𝐹superscript𝐿𝑝superscript𝐿𝑝Ω𝑐𝑝𝑝1subscriptnorm𝑓superscript𝐿𝑝superscript𝐿𝑝Ω\displaystyle\|F\|_{L^{p}(\mathbb{R},L^{p}(\Omega))}\leq c\frac{p}{p-1}\|f\|_{%L^{p}(\mathbb{R},L^{p}(\Omega))}.∥ italic_F ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( roman_Ω ) ) end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p end_ARG start_ARG italic_p - 1 end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( roman_Ω ) ) end_POSTSUBSCRIPT .

Note that in (1.4), F𝐹Fitalic_F is a X𝑋Xitalic_X-valued function that dominates the average of |f|𝑓|f|| italic_f | pointwisely, while in (1.2), Mf𝑀𝑓Mfitalic_M italic_f is merely a scalar valued function that carries much less information. Can similar results like (1.4) and (1.5) hold for X𝑋Xitalic_X-valued functions when the Banach space X𝑋Xitalic_X is not equipped with a total order but still has a reasonable partial order, e.g. for X=𝑋absentX=italic_X = the Schatten p𝑝pitalic_p classes?Based on G. Pisier’s work on operator spaces and M. Junge and Junge/Xu’s work on the theory of noncommutative martingales, T. Mei ([7]) proved a maximal inequality like (1.5) for X𝑋Xitalic_X being the noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. In the case that X=𝑋absentX=italic_X = the Schatten p𝑝pitalic_p-class Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and fLp(Sp)𝑓subscript𝐿𝑝subscript𝑆𝑝f\in L_{p}({S_{p}})italic_f ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) for some 1<p1𝑝1<p\leq\infty1 < italic_p ≤ ∞, this operator-maximal inequality says that there exists a Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-valued function F𝐹Fitalic_F such that

(i) 12txtx+t|f(y)|𝑑yF(x)12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦𝐹𝑥\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\leq F(x)divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ≤ italic_F ( italic_x ) as operators for all t>0𝑡0t>0italic_t > 0, i.e. F12txtx+t|f(y)|𝑑ySp𝐹12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦superscript𝑆𝑝F-\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\in S^{p}italic_F - divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ∈ italic_S start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is a self adjoint positive definite operator almost everywhere.

(ii) There exists an absolute constant c𝑐citalic_c such that

(1.6)FLp(Sp)cp2(p1)2fLp(Sp).subscriptnorm𝐹superscript𝐿𝑝superscript𝑆𝑝𝑐superscript𝑝2superscript𝑝12subscriptnorm𝑓superscript𝐿𝑝superscript𝑆𝑝\displaystyle\|F\|_{L^{p}(S^{p})}\leq c\frac{p^{2}}{(p-1)^{2}}\|f\|_{L^{p}(S^{%p})}.∥ italic_F ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_p - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT .

A main obstacle for the proof of (1.6) is the lack of a total order. This was overcome by M. Junge using G. Pisier’s duality result for the operator spaces Lp()subscript𝐿𝑝subscriptL_{p}(\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) and Lp(1)subscript𝐿𝑝subscript1L_{p}(\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). This article aims togive a direct proof for (1.6) and a more understandable proof of Pisier’s duality result (Lemma 2.2) for analysts who are not familiar with operator spaces.

2. Preliminary

Let H𝐻Hitalic_H be a separable Hilbert space. We denote the space of bounded linear operators on H𝐻Hitalic_H by B(H)𝐵𝐻B(H)italic_B ( italic_H ). For xB(H)𝑥𝐵𝐻x\in B(H)italic_x ∈ italic_B ( italic_H ), we denote by xsuperscript𝑥x^{*}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT the adjoint operator of x𝑥xitalic_x, and define |x|p=(xx)p2superscript𝑥𝑝superscriptsuperscript𝑥𝑥𝑝2|x|^{p}=(x^{*}x)^{\frac{p}{2}}| italic_x | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT = ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_x ) start_POSTSUPERSCRIPT divide start_ARG italic_p end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT by the functional calculus for 0<p<0𝑝0<p<\infty0 < italic_p < ∞. We say that xB(H)𝑥𝐵𝐻x\in B(H)italic_x ∈ italic_B ( italic_H ) is self-adjoint if x=x𝑥superscript𝑥x=x^{*}italic_x = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. We say a self-adjoint operator x𝑥xitalic_x is positive, denoted by x0𝑥0x\geq 0italic_x ≥ 0 if

(2.1)xe,e0,𝑥𝑒𝑒0\displaystyle\langle xe,e\rangle\geq 0,⟨ italic_x italic_e , italic_e ⟩ ≥ 0 ,

for all eH𝑒𝐻e\in Hitalic_e ∈ italic_H. This is equivalent to saying that x=yy𝑥superscript𝑦𝑦x=y^{*}yitalic_x = italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_y for some yB(H)𝑦𝐵𝐻y\in B(H)italic_y ∈ italic_B ( italic_H ). For two self-adjoint x,yB(H)𝑥𝑦𝐵𝐻x,y\in B(H)italic_x , italic_y ∈ italic_B ( italic_H ), we write xy𝑥𝑦x\leq yitalic_x ≤ italic_y if yx0𝑦𝑥0y-x\geq 0italic_y - italic_x ≥ 0.The Schatten p𝑝pitalic_p-classes Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, 0<p<0𝑝0<p<\infty0 < italic_p < ∞ are the spaces of xB(H)𝑥𝐵𝐻x\in B(H)italic_x ∈ italic_B ( italic_H ) so that

xp=(tr|x|p)1p<.subscriptnorm𝑥𝑝superscript𝑡𝑟superscript𝑥𝑝1𝑝\|x\|_{p}=(tr|x|^{p})^{\frac{1}{p}}<\infty.∥ italic_x ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ( italic_t italic_r | italic_x | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT < ∞ .

Here, tr𝑡𝑟tritalic_t italic_r is the usual trace tr(x)=kxek,ek𝑡𝑟𝑥subscript𝑘𝑥subscript𝑒𝑘subscript𝑒𝑘tr(x)=\sum_{k}\langle xe_{k},e_{k}\rangleitalic_t italic_r ( italic_x ) = ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⟨ italic_x italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⟩ for x0B(H)𝑥0𝐵𝐻x\geq 0\in B(H)italic_x ≥ 0 ∈ italic_B ( italic_H ). TheSchatten p𝑝pitalic_p classes share many properties with the psubscript𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces of sequences. In particular, Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT are Banach spaces for p1𝑝1p\geq 1italic_p ≥ 1 and B(H)𝐵𝐻B(H)italic_B ( italic_H ) (resp. Sqsubscript𝑆𝑞S_{q}italic_S start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT) is the dual space of S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (resp. Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for 1<p,q<,1p+1qformulae-sequence1𝑝𝑞1𝑝1𝑞1<p,q<\infty,\frac{1}{p}+\frac{1}{q}1 < italic_p , italic_q < ∞ , divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_q end_ARG), via the isometric isomorphism,

xϕx:ϕx(y)=tr(xy):maps-to𝑥subscriptitalic-ϕ𝑥subscriptitalic-ϕ𝑥𝑦𝑡𝑟𝑥𝑦x\mapsto\phi_{x}:\phi_{x}(y)=tr(xy)italic_x ↦ italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT : italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_y ) = italic_t italic_r ( italic_x italic_y )

for yS1𝑦subscript𝑆1y\in S_{1}italic_y ∈ italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (resp. Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT).

2.1. Noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces

A von Neumann algebra, by definition, is a weak-* closed subalgebras \mathcal{M}caligraphic_M of B(H)𝐵𝐻B(H)italic_B ( italic_H ).The completeness according to the weak *-topology of \mathcal{M}caligraphic_M ensures that it contains the spectral projections of its self-adjoint elements. ()subscript\ell_{\infty}({\mathbb{N}})roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( blackboard_N ) which is isometrically isomorphic to the subalgebras of the diagonal operators and B(H)𝐵𝐻B(H)italic_B ( italic_H ) itself are two basic examples of von Neumann algebras.The usual trace τ=tr𝜏𝑡𝑟\tau=tritalic_τ = italic_t italic_r on B(H)𝐵𝐻B(H)italic_B ( italic_H ) is a linear functional on the weak-* dense subspace S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT satisfying the following properties,

  • i)

    Tracial: τ(xy)=τ(xy)𝜏𝑥𝑦𝜏𝑥𝑦\tau(xy)=\tau(xy)italic_τ ( italic_x italic_y ) = italic_τ ( italic_x italic_y ),

  • ii)

    Faithful: if x0𝑥0x\geq 0italic_x ≥ 0 and τ(x)=0𝜏𝑥0\tau(x)=0italic_τ ( italic_x ) = 0 then x=0𝑥0x=0italic_x = 0,

  • iii)

    Lower semi-continuous: τ(supxi)=supτ(xi)𝜏supremumsubscript𝑥𝑖supremum𝜏subscript𝑥𝑖\tau(\sup x_{i})=\sup\tau(x_{i})italic_τ ( roman_sup italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = roman_sup italic_τ ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) when xi0subscript𝑥𝑖0x_{i}\geq 0italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 0 is increasing,

  • iv)

    Semifinite: for any x0𝑥0x\geq 0italic_x ≥ 0, there exists 0yx0𝑦𝑥0\leq y\leq x0 ≤ italic_y ≤ italic_x such that τ(y)<𝜏𝑦\tau(y)<\inftyitalic_τ ( italic_y ) < ∞.

This leads to defining semifinite von Neumann algebras \mathcal{M}caligraphic_M as those equipped with a trace τ𝜏\tauitalic_τ, which is an unbounded linear functional satisfying (i)-(iv) for x,y𝑥𝑦x,yitalic_x , italic_y belonging to a weak * dense subspace. Note the restriction of the usual trace of B(H)𝐵𝐻B(H)italic_B ( italic_H ) on \mathcal{M}caligraphic_M may not be semifinite, and not every von Neumann algebras is semifinite. Given such a pair (,τ)𝜏(\mathcal{M},\tau)( caligraphic_M , italic_τ ) (which is usually viewed as a noncommutative Lsubscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT- space) the noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces associated to it are the completion of f𝑓f\in{\mathcal{M}}italic_f ∈ caligraphic_M with finite quasi norm

fp=[τ(|f|p)]1pfor0<p<,formulae-sequencesubscriptnorm𝑓𝑝superscriptdelimited-[]𝜏superscript𝑓𝑝1𝑝for0𝑝\|f\|_{p}\,=\,\left[\tau\left(|f|^{p}\right)\right]^{\frac{1}{p}}\quad\mbox{%for}\quad 0<p<\infty,∥ italic_f ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = [ italic_τ ( | italic_f | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT for 0 < italic_p < ∞ ,

where |f|p=(ff)p/2superscript𝑓𝑝superscriptsuperscript𝑓𝑓𝑝2|f|^{p}=(f^{*}f)^{p/2}| italic_f | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT = ( italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_f ) start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT is constructed via functional calculus. We set L()=subscript𝐿L_{\infty}(\mathcal{M})=\mathcal{M}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( caligraphic_M ) = caligraphic_M.

The Schatten p𝑝pitalic_p-classes Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and the Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces on a semifinite measure space (Ω,μ)Ω𝜇(\Omega,\mu)( roman_Ω , italic_μ ) are examples of noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces associated with =B(H)𝐵𝐻\mathcal{M}=B(H)caligraphic_M = italic_B ( italic_H ) and =L(Ω,μ)subscript𝐿Ω𝜇{\mathcal{M}}=L_{\infty}(\Omega,\mu)caligraphic_M = italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) respectively. Another basic example arises from group von Neumann algebras. Every commutative semifinite von Neumann algebra is isometrically isomorphic to the space L(Ω,μ)subscript𝐿Ω𝜇L_{\infty}(\Omega,\mu)italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) of essentially bounded functions on some semifinite measure space (Ω,μ)Ω𝜇(\Omega,\mu)( roman_Ω , italic_μ ).Many basic properties of Lp(Ω,μ)subscript𝐿𝑝Ω𝜇L_{p}(\Omega,\mu)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) extend to Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ). In particular, one has the Hölder’s inequality which states that

xypxryq,subscriptnorm𝑥𝑦𝑝subscriptnorm𝑥𝑟subscriptnorm𝑦𝑞\displaystyle\|xy\|_{p}\leq\|x\|_{r}\|y\|_{q},∥ italic_x italic_y ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ italic_x ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∥ italic_y ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ,

for xLr(),yLq(),0p,q,r,,1q+1r=1px\in L_{r}(\mathcal{M}),y\in L_{q}(\mathcal{M}),0\leq p,q,r,\leq\infty,\frac{1%}{q}+\frac{1}{r}=\frac{1}{p}italic_x ∈ italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( caligraphic_M ) , italic_y ∈ italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) , 0 ≤ italic_p , italic_q , italic_r , ≤ ∞ , divide start_ARG 1 end_ARG start_ARG italic_q end_ARG + divide start_ARG 1 end_ARG start_ARG italic_r end_ARG = divide start_ARG 1 end_ARG start_ARG italic_p end_ARG. The interpolation properties of Lp(Ω,μ)subscript𝐿𝑝Ω𝜇L_{p}(\Omega,\mu)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) extend to Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) as well, and the duality properties of Lp(Ω,μ)subscript𝐿𝑝Ω𝜇L_{p}(\Omega,\mu)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) extend to Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) for the range p1𝑝1p\geq 1italic_p ≥ 1. The elements in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) may not belong to \mathcal{M}caligraphic_M or B(H)𝐵𝐻B(H)italic_B ( italic_H ) in general. They can be understood as unbounded operators affiliated with \mathcal{M}caligraphic_M.For self-adjoint elements x,y𝑥𝑦x,yitalic_x , italic_y in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), we say x𝑥xitalic_x is positive, denoted by x0𝑥0x\geq 0italic_x ≥ 0 if (2.1) holds (the quantity may be \infty though). We write xy𝑥𝑦x\leq yitalic_x ≤ italic_y if yx0𝑦𝑥0y-x\geq 0italic_y - italic_x ≥ 0.

Define (Lp())subscriptsubscript𝐿𝑝\ell_{\infty}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) such that

(2.2)x(Lp())=supnxnp<.subscriptnorm𝑥subscriptsubscript𝐿𝑝subscriptsupremum𝑛subscriptnormsubscript𝑥𝑛𝑝\displaystyle\|x\|_{\ell_{\infty}(L_{p}(\mathcal{M}))}=\sup_{n}\|x_{n}\|_{p}<\infty.∥ italic_x ∥ start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT = roman_sup start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT < ∞ .

Define 1(Lp())subscript1subscript𝐿𝑝\ell_{1}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) such that

(2.3)x1(Lp())=nxnp<.subscriptnorm𝑥subscript1subscript𝐿𝑝subscript𝑛subscriptnormsubscript𝑥𝑛𝑝\displaystyle\|x\|_{\ell_{1}(L_{p}(\mathcal{M}))}=\sum_{n}\|x_{n}\|_{p}<\infty.∥ italic_x ∥ start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT < ∞ .

We have the duality that

(Lq())=(1(Lp()))subscriptsubscript𝐿𝑞superscriptsubscript1subscript𝐿𝑝\displaystyle\ell_{\infty}(L_{q}(\mathcal{M}))=(\ell_{1}(L_{p}(\mathcal{M})))^%{*}roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ) = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT

for 1p<,1p+1q=1formulae-sequence1𝑝1𝑝1𝑞11\leq p<\infty,\frac{1}{p}+\frac{1}{q}=11 ≤ italic_p < ∞ , divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_q end_ARG = 1, via the isometric isomorphism

xφx;φx(y)=nτ(xnyn).formulae-sequencemaps-to𝑥subscript𝜑𝑥subscript𝜑𝑥𝑦subscript𝑛𝜏subscript𝑥𝑛subscript𝑦𝑛x\mapsto\varphi_{x};\varphi_{x}(y)=\sum_{n}\tau(x_{n}y_{n}).italic_x ↦ italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ; italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_y ) = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) .

On the other hand, 1(Lq())subscript1subscript𝐿𝑞\ell_{1}(L_{q}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ) isometrically embeds into the dual of (Lp())subscriptsubscript𝐿𝑝\ell_{\infty}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) as a weak *-dense subspace via the same isomorphism for the same range and relation of p,q𝑝𝑞p,qitalic_p , italic_q. We refer to the survey paper [11] for more information on noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces.

2.2. Pisier’s Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) norm

Given two positive operators x,yLp()𝑥𝑦subscript𝐿𝑝x,y\in L_{p}(\mathcal{M})italic_x , italic_y ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) e.g. x,ySp𝑥𝑦subscript𝑆𝑝x,y\in S_{p}italic_x , italic_y ∈ italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, the expression sup(x,y)supremum𝑥𝑦\sup(x,y)roman_sup ( italic_x , italic_y ) does not make sense unless x,y𝑥𝑦x,yitalic_x , italic_y commutes so that the least upper element exists.Nevertheless, the following is a reasonable expression for supnxnLp()subscriptnormsubscriptsupremum𝑛subscript𝑥𝑛subscript𝐿𝑝\|\sup_{n}x_{n}\|_{L_{p}(\mathcal{M})}∥ roman_sup start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) end_POSTSUBSCRIPT for sequences of positive elements xnsubscript𝑥𝑛x_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ),

(2.4)|(xn)Lp(;+)=inf{aLp;xna,aLp()}.\displaystyle\||(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty}^{+})}=\inf\{\|a\|_{%L_{p}};x_{n}\leq a,a\in L_{p}(\mathcal{M})\}.∥ | ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT = roman_inf { ∥ italic_a ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≤ italic_a , italic_a ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) } .

For sequences of positive elements ynsubscript𝑦𝑛y_{n}italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT in Lp(),1p<subscript𝐿𝑝1𝑝L_{p}(\mathcal{M}),1\leq p<\inftyitalic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) , 1 ≤ italic_p < ∞ such that n=1Nynsuperscriptsubscript𝑛1𝑁subscript𝑦𝑛\sum_{n=1}^{N}y_{n}∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT converges in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), let

(2.5)(yn)Lp(;1+)=n=1ynLp().subscriptnormsubscript𝑦𝑛subscript𝐿𝑝superscriptsubscript1subscriptnormsuperscriptsubscript𝑛1subscript𝑦𝑛subscript𝐿𝑝\displaystyle\|(y_{n})\|_{L_{p}(\mathcal{M};\ell_{1}^{+})}=\left\|\sum_{n=1}^{%\infty}y_{n}\right\|_{L_{p}(\mathcal{M})}.∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT = ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) end_POSTSUBSCRIPT .

Here the right hand side is an increasing sequence. G. Pisier ([9] and M. Junge ([5] proved that the expressions (2.4) and (2.5) extend to Banach space norms.111The obvious extension n|xn|psubscriptnormsubscript𝑛subscript𝑥𝑛𝑝\|\sum_{n}|x_{n}|\|_{p}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for sequences xnLp()subscript𝑥𝑛subscript𝐿𝑝x_{n}\in L_{p}(\mathcal{M})italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) fails the triangle inequality. Furthermore, they proved a duality result for these two norms (see Lemma 2.2), which is the key for Junge’s proof of the noncommutative Doob’s maximal inequality.

Define Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) which admits a factorization

(2.6)xn=aznb,n1,formulae-sequencesubscript𝑥𝑛𝑎subscript𝑧𝑛𝑏for-all𝑛1x_{n}=az_{n}b,\quad\forall n\geq 1,italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b , ∀ italic_n ≥ 1 ,

where a,bL2p()𝑎𝑏subscript𝐿2𝑝a,b\in L_{2p}(\mathcal{M})italic_a , italic_b ∈ italic_L start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ( caligraphic_M ) and z=(zn)𝑧subscript𝑧𝑛z=(z_{n})italic_z = ( italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) belongs to the unit ball of \mathcal{M}caligraphic_M.Given xLp(;)𝑥subscript𝐿𝑝subscriptx\in L_{p}(\mathcal{M};\ell_{\infty})italic_x ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ), define

(2.7)xLp(;)=inf{a2psupn1znb2p},subscriptnorm𝑥subscript𝐿𝑝subscriptinfimumsubscriptnorm𝑎2𝑝subscriptsupremum𝑛1subscriptnormsubscript𝑧𝑛subscriptnorm𝑏2𝑝\displaystyle\|x\|_{L_{p}(\mathcal{M};\ell_{\infty})}=\inf\left\{\|a\|_{2p}%\sup_{n\geq 1}\|z_{n}\|_{\infty}\|b\|_{2p}\right\},∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = roman_inf { ∥ italic_a ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT ∥ italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ∥ italic_b ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT } ,

where the infimum is taken over all factorizations of x𝑥xitalic_x as in (2.6). We denote the subset of Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) consisting of all positive sequences by Lp(;+)subscript𝐿𝑝subscriptsuperscriptL_{p}(\mathcal{M};\ell^{+}_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ). Next, we denote the subspace of Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) consisting of all sequences x=(xn)n𝑥subscriptsubscript𝑥𝑛𝑛x=(x_{n})_{n}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that xn=0subscript𝑥𝑛0x_{n}=0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 for n>N𝑛𝑁n>Nitalic_n > italic_N by Lp(;N)subscript𝐿𝑝subscriptsuperscript𝑁L_{p}(\mathcal{M};\ell^{N}_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ).

Define Lp(1)subscript𝐿𝑝subscript1L_{p}(\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) which admits a factorization

(2.8)xn=anbn,for alln1,formulae-sequencesubscript𝑥𝑛subscript𝑎𝑛subscript𝑏𝑛for all𝑛1x_{n}=a_{n}b_{n},\quad\text{ for all }n\geq 1,italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , for all italic_n ≥ 1 ,

such that the series nanansubscript𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛\sum_{n}a_{n}a_{n}^{*}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and nbnbnsubscript𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛\sum_{n}b_{n}^{*}b_{n}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT converges in Lp().subscript𝐿𝑝L_{p}(\mathcal{M}).italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) . Given xLp(;1)𝑥subscript𝐿𝑝subscript1x\in L_{p}(\mathcal{M};\ell_{1})italic_x ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), define

(2.9)xLp(;1)=inf{(ajaj)122p(bjbj)122p},subscriptnorm𝑥subscript𝐿𝑝subscript1infimumsubscriptnormsuperscriptsubscript𝑎𝑗superscriptsubscript𝑎𝑗122𝑝subscriptnormsuperscriptsuperscriptsubscript𝑏𝑗subscript𝑏𝑗122𝑝\|x\|_{L_{p}(\mathcal{M};\ell_{1})}=\inf\left\{\left\|\left(\sum a_{j}a_{j}^{*%}\right)^{\frac{1}{2}}\right\|_{2p}\cdot\left\|\left(\sum b_{j}^{*}b_{j}\right%)^{\frac{1}{2}}\right\|_{2p}\right\},∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = roman_inf { ∥ ( ∑ italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ⋅ ∥ ( ∑ italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT } ,

where the infimum is taken over all possible factorizations (2.8).222There are slightly different definition of the space Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) in the literature. Here, we use the definition given in [10]. We denote the subset of Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) consisting of all positive sequences by Lp(;1+)subscript𝐿𝑝subscriptsuperscript1L_{p}(\mathcal{M};\ell^{+}_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).Define Lp(1N)subscript𝐿𝑝superscriptsubscript1𝑁L_{p}(\ell_{1}^{N})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) to be the space of all sequences x=(xn)n1Lp(1)𝑥subscriptsubscript𝑥𝑛𝑛1subscript𝐿𝑝subscript1x=(x_{n})_{n\geq 1}\in L_{p}(\ell_{1})italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) with xn=0subscript𝑥𝑛0x_{n}=0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 for n>N𝑛𝑁n>Nitalic_n > italic_N.G. Pisier ([9]) proved that (2.7) and (2.9) are norms extending (2.4) and (2.5).

Lemma 2.1 (Pisier [9]).

For sequences xn0Lp()subscript𝑥𝑛0subscript𝐿𝑝x_{n}\geq 0\in L_{p}(\mathcal{M})italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), we have

(2.10)(xn)Lp(;1)=(xn)Lp(;1+)subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript1subscriptnormsubscript𝑥𝑛subscript𝐿𝑝superscriptsubscript1\displaystyle\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{1})}=\|(x_{n})\|_{L_{p}(%\mathcal{M};\ell_{1}^{+})}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT

in the sense that both sides are equally finite or both sides are infinite, and

(2.11)(xn)Lp(;)(xn)Lp(;+)4(xn)Lp(;)subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscriptsubscriptnormsubscript𝑥𝑛subscript𝐿𝑝superscriptsubscript4subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript\displaystyle\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}\leq\|(x_{n})\|_{L_%{p}(\mathcal{M};\ell_{\infty}^{+})}\leq 4\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{%\infty})}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 4 ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT
Proof.

We prove (2.10) first. The left hand side is obviously smaller because we may choosean=bn=(xn)12subscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑥𝑛12a_{n}=b_{n}=(x_{n})^{\frac{1}{2}}italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT for xn0subscript𝑥𝑛0x_{n}\geq 0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0. To prove that the right hand side is smaller, we assume (xn)Lp(;1)=1subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript11\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{1})}=1∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = 1 and assume that there exists a factorization that xn=anbnsubscript𝑥𝑛subscript𝑎𝑛subscript𝑏𝑛x_{n}=a_{n}b_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that

nananp,nbnbnp1+ε.subscriptnormsubscript𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛𝑝subscriptnormsubscript𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛𝑝1𝜀\|\sum_{n}a_{n}a_{n}^{*}\|_{p},\|\sum_{n}b_{n}b_{n}^{*}\|_{p}\leq 1+\varepsilon.∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ 1 + italic_ε .

Then, 2xn=anbn+bnananan+bnbn2subscript𝑥𝑛subscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛2x_{n}=a_{n}b_{n}+b_{n}^{*}a_{n}^{*}\leq a_{n}a_{n}^{*}+b_{n}^{*}b_{n}2 italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≤ italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT because(anbn)(anbn)0superscriptsuperscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛0(a_{n}^{*}-b_{n})^{*}(a_{n}^{*}-b_{n})\geq 0( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≥ 0. So, n=1Nxnsuperscriptsubscript𝑛1𝑁subscript𝑥𝑛\sum_{n=1}^{N}x_{n}∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT converges in Lp()subscript𝐿𝑝L_{p}({\mathcal{M}})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) because nNanansuperscriptsubscript𝑛𝑁subscript𝑎𝑛superscriptsubscript𝑎𝑛\sum_{n}^{N}a_{n}a_{n}^{*}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and nNbnbnsuperscriptsubscript𝑛𝑁superscriptsubscript𝑏𝑛subscript𝑏𝑛\sum_{n}^{N}b_{n}^{*}b_{n}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT do. Moreover,

2n=1Nxnpn=1Nanan+bnbnp2+2ε.2subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑥𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑎𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛𝑝22𝜀2\|\sum_{n=1}^{N}x_{n}\|_{p}\leq\|\sum_{n=1}^{N}a_{n}a_{n}^{*}+b_{n}b_{n}^{*}%\|_{p}\leq 2+2\varepsilon.2 ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ 2 + 2 italic_ε .

We conclude by taking N,ε0.formulae-sequence𝑁𝜀0N\rightarrow\infty,\varepsilon\rightarrow 0.italic_N → ∞ , italic_ε → 0 .

For (2.11), assuming xnaLp()subscript𝑥𝑛𝑎subscript𝐿𝑝x_{n}\leq a\in L_{p}(\mathcal{M})italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≤ italic_a ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), we denote by p𝑝pitalic_p the projection onto the kernel of a𝑎aitalic_a. Then, p𝑝p\in\mathcal{M}italic_p ∈ caligraphic_M. Let zn=(p+a12)1xn(p+a12)1subscript𝑧𝑛superscript𝑝superscript𝑎121subscript𝑥𝑛superscript𝑝superscript𝑎121z_{n}=(p+a^{\frac{1}{2}})^{-1}x_{n}(p+a^{\frac{1}{2}})^{-1}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( italic_p + italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_p + italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Then, znsubscript𝑧𝑛z_{n}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT belongs to the unit ball of \mathcal{M}caligraphic_M and xn=a12zna12subscript𝑥𝑛superscript𝑎12subscript𝑧𝑛superscript𝑎12x_{n}=a^{\frac{1}{2}}z_{n}a^{\frac{1}{2}}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT.We see that the first inequality holds. Next, we show the second inequality. We assume that (xn)Lp(;)=1subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript1\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}=1∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = 1 and xnsubscript𝑥𝑛x_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT has a factorization xn=aznbsubscript𝑥𝑛𝑎subscript𝑧𝑛𝑏x_{n}=az_{n}bitalic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b with zn=1normsubscript𝑧𝑛1\|z_{n}\|=1∥ italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ = 1 and a2p,b2p1+εsubscriptnorm𝑎2𝑝subscriptnorm𝑏2𝑝1𝜀\|a\|_{2p},\|b\|_{2p}\leq 1+\varepsilon∥ italic_a ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT , ∥ italic_b ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ≤ 1 + italic_ε.We write zn=k=03ikzn,ksubscript𝑧𝑛superscriptsubscript𝑘03superscript𝑖𝑘subscript𝑧𝑛𝑘z_{n}=\sum_{k=0}^{3}i^{k}z_{n,k}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_i start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT with contractions zn,k0subscript𝑧𝑛𝑘0z_{n,k}\geq 0italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT ≥ 0, and consider the new decomposition xn=kakzn,kbsubscript𝑥𝑛subscript𝑘subscript𝑎𝑘subscript𝑧𝑛𝑘𝑏x_{n}=\sum_{k}a_{k}z_{n,k}bitalic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_b with ak=ikasubscript𝑎𝑘superscript𝑖𝑘𝑎a_{k}=i^{k}aitalic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_i start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_a. Noting that (akb)zn,k(akb)0superscriptsuperscriptsubscript𝑎𝑘𝑏subscript𝑧𝑛𝑘superscriptsubscript𝑎𝑘𝑏0(a_{k}^{*}-b)^{*}z_{n,k}(a_{k}^{*}-b)\geq 0( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b ) ≥ 0, we have

xn=12k=03(akzn,kb+bzn,kak)12k=13(akznkak+bzn,kb)2(aa+bb),subscript𝑥𝑛12superscriptsubscript𝑘03subscript𝑎𝑘subscript𝑧𝑛𝑘𝑏superscript𝑏subscript𝑧𝑛𝑘superscriptsubscript𝑎𝑘12superscriptsubscript𝑘13superscriptsubscript𝑎𝑘subscript𝑧subscript𝑛𝑘subscript𝑎𝑘𝑏subscript𝑧𝑛𝑘superscript𝑏2superscript𝑎𝑎𝑏superscript𝑏x_{n}=\frac{1}{2}\sum_{k=0}^{3}(a_{k}z_{n,k}b+b^{*}z_{n,k}a_{k}^{*})\leq\frac{%1}{2}\sum_{k=1}^{3}(a_{k}^{*}z_{n_{k}}a_{k}+bz_{n,k}b^{*})\leq 2(a^{*}a+bb^{*}),italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_b + italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_b italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ 2 ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a + italic_b italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ,

with 2(aa+bb)p(2+2ε)2.subscriptnorm2superscript𝑎𝑎𝑏superscript𝑏𝑝superscript22𝜀2\|2(a^{*}a+bb^{*})\|_{p}\leq(2+2\varepsilon)^{2}.∥ 2 ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a + italic_b italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ( 2 + 2 italic_ε ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .Taking ε0𝜀0\varepsilon\rightarrow 0italic_ε → 0, we conclude (2.11).∎

The following lemma is another key to understanding the proof of the operator Hardy-Littlewood maximal inequality.The result was proved by G. Pisier ([9, 5]). We include an argument for the case of finite sequences below.

Lemma 2.2 ([9, 5]).

The norms (2.4) and (2.5) are in duality. More precisely, for 1p<,1p+1q=1formulae-sequence1𝑝1𝑝1𝑞11\leq p<\infty,\frac{1}{p}+\frac{1}{q}=11 ≤ italic_p < ∞ , divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_q end_ARG = 1,

  • (i)

    For any N𝑁Nitalic_N-tuple (y1,,yN)subscript𝑦1subscript𝑦𝑁(y_{1},\dots,y_{N})( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) and yk0,k=1,,Nformulae-sequencesubscript𝑦𝑘0𝑘1𝑁y_{k}\geq 0,k=1,\dots,Nitalic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≥ 0 , italic_k = 1 , … , italic_N, we have

    (2.12)(yn)Lp(;1N)=sup{|τ(j=1Nxjyj)|:(xj)Lq(;+)1}.\|(y_{n})\|_{L_{p}(\mathcal{M};\ell_{1}^{N})}=\sup\left\{|\tau\left(\sum_{j=1}%^{N}x_{j}y_{j}\right)|:\|(x_{j})\|_{L_{q}(\mathcal{M};\ell_{\infty}^{+})}\leq 1%\right\}.∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT = roman_sup { | italic_τ ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) | : ∥ ( italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } .
  • (ii)

    For any bounded sequence (xn)subscript𝑥𝑛(x_{n})( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) in Lq()subscript𝐿𝑞L_{q}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) with xn0subscript𝑥𝑛0x_{n}\geq 0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, we have

    (2.13)(xn)Lq(;)=supN{|τ(j=1Nxjyj)|:yj0,(yj)Lp(;1N)1}.\|(x_{n})\|_{L_{q}(\mathcal{M};\ell_{\infty})}=\sup_{N}\left\{|\tau\left(\sum_%{j=1}^{N}x_{j}y_{j}\right)|:y_{j}\geq 0,\|(y_{j})\|_{L_{p}(\mathcal{M};\ell_{1%}^{N})}\leq 1\right\}.∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = roman_sup start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT { | italic_τ ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) | : italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 0 , ∥ ( italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } .
  • (iii)

    Lq(;+)subscript𝐿𝑞superscriptsubscriptL_{q}(\mathcal{M};\ell_{\infty}^{+})italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) embeds isometrically into the dual space of Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) for 1p<1𝑝1\leq p<\infty1 ≤ italic_p < ∞ via the isomorphism

    xφx:φx(y)=nxnyn.:maps-to𝑥subscript𝜑𝑥subscript𝜑𝑥𝑦subscript𝑛subscript𝑥𝑛subscript𝑦𝑛x\mapsto\varphi_{x}:\varphi_{x}(y)=\sum_{n}x_{n}y_{n}.italic_x ↦ italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT : italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_y ) = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .

    For any φ𝜑\varphiitalic_φ in Lp(;1)subscript𝐿𝑝superscriptsubscript1L_{p}(\mathcal{M};\ell_{1})^{*}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT such that φ((yn))0𝜑subscript𝑦𝑛0\varphi((y_{n}))\geq 0italic_φ ( ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) ≥ 0 for finite positive sequences (yn)Lp()subscript𝑦𝑛subscript𝐿𝑝(y_{n})\in L_{p}(\mathcal{M})( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), there is a (unique) positive sequence (xn)subscript𝑥𝑛(x_{n})( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) in Lq()subscript𝐿𝑞L_{q}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) with

    xLq(;)=φ(Lp(;1))subscriptnorm𝑥subscript𝐿𝑞subscriptsubscriptnorm𝜑superscriptsubscript𝐿𝑝subscript1\|x\|_{L_{q}(\mathcal{M};\ell_{\infty})}=\|\varphi\|_{(L_{p}(\mathcal{M};\ell_%{1}))^{*}}∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = ∥ italic_φ ∥ start_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT

    such that for any N1𝑁1N\geq 1italic_N ≥ 1 and any y=(y1,,yN)Lp(;1N)𝑦subscript𝑦1subscript𝑦𝑁subscript𝐿𝑝superscriptsubscript1𝑁y=(y_{1},\dots,y_{N})\in L_{p}(\mathcal{M};\ell_{1}^{N})italic_y = ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ),

    φ(y)=τ(j=1Nxjyj).𝜑𝑦𝜏superscriptsubscript𝑗1𝑁subscript𝑥𝑗subscript𝑦𝑗\varphi(y)=\tau\left(\sum_{j=1}^{N}x_{j}y_{j}\right).italic_φ ( italic_y ) = italic_τ ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) .
Proof.

(i). Let x=(xn)Lq(;),y=(yn)Lp(;1)formulae-sequence𝑥subscript𝑥𝑛subscript𝐿𝑞subscript𝑦subscript𝑦𝑛subscript𝐿𝑝subscript1x=(x_{n})\in L_{q}(\mathcal{M};\ell_{\infty}),y=(y_{n})\in L_{p}(\mathcal{M};%\ell_{1})italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) , italic_y = ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). First, we prove that

(2.14)|τ(xjyj)|(xj)Lq(;)yLp(;1N).𝜏subscript𝑥𝑗subscript𝑦𝑗subscriptnormsubscript𝑥𝑗subscript𝐿𝑞subscriptsubscriptnorm𝑦subscript𝐿𝑝superscriptsubscript1𝑁\left|\sum\tau(x_{j}y_{j})\right|\leq\|(x_{j})\|_{L_{q}(\mathcal{M};\ell_{%\infty})}\|y\|_{L_{p}(\mathcal{M};\ell_{1}^{N})}.| ∑ italic_τ ( italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) | ≤ ∥ ( italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ∥ italic_y ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT .

Consider a factorization xj=azjbsubscript𝑥𝑗𝑎subscript𝑧𝑗𝑏x_{j}=az_{j}bitalic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_a italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_b where a,bL2q()𝑎𝑏subscript𝐿2𝑞a,b\in L_{2q}(\mathcal{M})italic_a , italic_b ∈ italic_L start_POSTSUBSCRIPT 2 italic_q end_POSTSUBSCRIPT ( caligraphic_M ) and (zj)subscript𝑧𝑗(z_{j})( italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) belongs to the unit ball of \mathcal{M}caligraphic_M.Also consider a factorization of yj=ujvjsubscript𝑦𝑗subscript𝑢𝑗subscript𝑣𝑗y_{j}=u_{j}v_{j}italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT where uj,vjL2p()subscript𝑢𝑗subscript𝑣𝑗subscript𝐿2𝑝u_{j},v_{j}\in L_{2p}(\mathcal{M})italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ( caligraphic_M ).Then, by Hölder’s inequality and the Cauchy-Schwarz inequality,

|jτ(azjbujvj)|subscript𝑗𝜏𝑎subscript𝑧𝑗𝑏subscript𝑢𝑗subscript𝑣𝑗\displaystyle\left|\sum_{j}\tau(az_{j}bu_{j}v_{j})\right|| ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_τ ( italic_a italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) |=|jτ(zjbujvja)|jbujvja1absentsubscript𝑗𝜏subscript𝑧𝑗𝑏subscript𝑢𝑗subscript𝑣𝑗𝑎subscript𝑗subscriptnorm𝑏subscript𝑢𝑗subscript𝑣𝑗𝑎1\displaystyle=\left|\sum_{j}\tau(z_{j}bu_{j}v_{j}a)\right|\leq\sum_{j}\|bu_{j}%v_{j}a\|_{1}= | ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_τ ( italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ) | ≤ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT
jbuj2vja2absentsubscript𝑗subscriptnorm𝑏subscript𝑢𝑗2subscriptnormsubscript𝑣𝑗𝑎2\displaystyle\leq\sum_{j}\|bu_{j}\|_{2}\|v_{j}a\|_{2}≤ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT
(jbuj22)12(jvja22)12absentsuperscriptsubscript𝑗superscriptsubscriptnorm𝑏subscript𝑢𝑗2212superscriptsubscript𝑗superscriptsubscriptnormsubscript𝑣𝑗𝑎2212\displaystyle\leq\left(\sum_{j}\|bu_{j}\|_{2}^{2}\right)^{\frac{1}{2}}\left(%\sum_{j}\|v_{j}a\|_{2}^{2}\right)^{\frac{1}{2}}≤ ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT
=(τ(bjujujb))12(τ(ajvjvja))12absentsuperscript𝜏𝑏subscript𝑗subscript𝑢𝑗superscriptsubscript𝑢𝑗superscript𝑏12superscript𝜏superscript𝑎subscript𝑗subscript𝑣𝑗superscriptsubscript𝑣𝑗𝑎12\displaystyle=\left(\tau(b\sum_{j}u_{j}u_{j}^{*}b^{*})\right)^{\frac{1}{2}}%\left(\tau(a^{*}\sum_{j}v_{j}v_{j}^{*}a)\right)^{\frac{1}{2}}= ( italic_τ ( italic_b ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( italic_τ ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a ) ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT
bbq12jujujp12aaq12jvjvjp12absentsubscriptsuperscriptnormsuperscript𝑏𝑏12𝑞subscriptsuperscriptnormsubscript𝑗subscript𝑢𝑗superscriptsubscript𝑢𝑗12𝑝subscriptsuperscriptnorm𝑎superscript𝑎12𝑞subscriptsuperscriptnormsubscript𝑗subscript𝑣𝑗superscriptsubscript𝑣𝑗12𝑝\displaystyle\leq\|b^{*}b\|^{\frac{1}{2}}_{q}\|\sum_{j}u_{j}u_{j}^{*}\|^{\frac%{1}{2}}_{p}\|aa^{*}\|^{\frac{1}{2}}_{q}\|\sum_{j}v_{j}v_{j}^{*}\|^{\frac{1}{2}%}_{p}≤ ∥ italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∥ italic_a italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT
b2q(jujuj)12pa2q(jvjvj)12pabsentsubscriptnorm𝑏2𝑞subscriptnormsuperscriptsubscript𝑗subscript𝑢𝑗superscriptsubscript𝑢𝑗12𝑝subscriptnorm𝑎2𝑞subscriptnormsuperscriptsubscript𝑗subscript𝑣𝑗superscriptsubscript𝑣𝑗12𝑝\displaystyle\leq\|b\|_{2q}\|(\sum_{j}u_{j}u_{j}^{*})^{\frac{1}{2}}\|_{p}\|a\|%_{2q}\|(\sum_{j}v_{j}v_{j}^{*})^{\frac{1}{2}}\|_{p}≤ ∥ italic_b ∥ start_POSTSUBSCRIPT 2 italic_q end_POSTSUBSCRIPT ∥ ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∥ italic_a ∥ start_POSTSUBSCRIPT 2 italic_q end_POSTSUBSCRIPT ∥ ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT

Hence, we proved the one side inequality of (i) and (ii) and the first half of (iii).

Now, suppose yn0,y=(yn)nLp(;1N)formulae-sequencesubscript𝑦𝑛0𝑦subscriptsubscript𝑦𝑛𝑛subscript𝐿𝑝superscriptsubscript1𝑁y_{n}\geq 0,y=(y_{n})_{n}\in L_{p}(\mathcal{M};\ell_{1}^{N})italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 , italic_y = ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ).Choose x=(xn)n=1N𝑥superscriptsubscriptsubscript𝑥𝑛𝑛1𝑁x=(x_{n})_{n=1}^{N}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT with xn=(k=1Nyk)p1subscript𝑥𝑛superscriptsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝1x_{n}=(\sum_{k=1}^{N}y_{k})^{p-1}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT for all 1nN1𝑛𝑁1\leq n\leq N1 ≤ italic_n ≤ italic_N. Note

(xn)Lq(;)=(kyk)p1q=k=1Nykpp1subscriptnormsubscript𝑥𝑛subscript𝐿𝑞subscriptsubscriptnormsuperscriptsubscript𝑘subscript𝑦𝑘𝑝1𝑞superscriptsubscriptnormsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝𝑝1\|(x_{n})\|_{L_{q}(\mathcal{M};\ell_{\infty})}=\left\|\left(\sum_{k}y_{k}%\right)^{p-1}\right\|_{q}=\|\sum_{k=1}^{N}~{}y_{k}\|_{p}^{p-1}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = ∥ ( ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = ∥ ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT

Thus,

τ(kykxk)=τ(k=1Nyk(k=1Nyk)p1)=k=1Nykp.𝜏subscript𝑘subscript𝑦𝑘subscript𝑥𝑘𝜏superscriptsubscript𝑘1𝑁subscript𝑦𝑘superscriptsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝1subscriptnormsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝\tau\left(\sum_{k}y_{k}x_{k}\right)=\tau\left(\sum_{k=1}^{N}~{}y_{k}\left(\sum%_{k=1}^{N}~{}y_{k}\right)^{p-1}\right)=\|\sum_{k=1}^{N}~{}y_{k}\|_{p}.italic_τ ( ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) = italic_τ ( ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT ) = ∥ ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT .

Therefore, we proved the other direction of (i).

We now prove the other direction of (ii). By the Hahn-Banach theorem, for any (xn)Lp(;)subscript𝑥𝑛subscript𝐿𝑝subscript(x_{n})\in L_{p}(\mathcal{M};\ell_{\infty})( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ), there exists φLp(;)𝜑subscript𝐿𝑝superscriptsubscript\varphi\in L_{p}(\mathcal{M};\ell_{\infty})^{*}italic_φ ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, such that φ=1norm𝜑1\|\varphi\|=1∥ italic_φ ∥ = 1 and φ((xn))=(xn)Lp(;)𝜑subscript𝑥𝑛subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript\varphi((x_{n}))=\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}italic_φ ( ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT.Since Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) is a subspace of (Lp())subscriptsubscript𝐿𝑝\ell_{\infty}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ), there exists φ~((Lp()))~𝜑superscriptsubscriptsubscript𝐿𝑝\tilde{\varphi}\in(\ell_{\infty}(L_{p}(\mathcal{M})))^{*}over~ start_ARG italic_φ end_ARG ∈ ( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT such thatφ(x)=φ~(x)𝜑𝑥~𝜑𝑥\varphi(x)=\tilde{\varphi}(x)italic_φ ( italic_x ) = over~ start_ARG italic_φ end_ARG ( italic_x ). Since the unit ball of 1N(Lp())superscriptsubscript1𝑁subscript𝐿𝑝\ell_{1}^{N}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) is weak *-dense in the unit ball of ((Lp()))superscriptsubscriptsubscript𝐿𝑝(\ell_{\infty}(L_{p}(\mathcal{M})))^{*}( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and xn0subscript𝑥𝑛0x_{n}\geq 0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, we conclude that for any ε>0𝜀0\varepsilon>0italic_ε > 0, there exists a φε((Lp()))subscript𝜑𝜀superscriptsubscriptsubscript𝐿𝑝\varphi_{\varepsilon}\in(\ell_{\infty}(L_{p}(\mathcal{M})))^{*}italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ∈ ( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT in the form

φε((xn))=n=1τ(xnyn),subscript𝜑𝜀subscript𝑥𝑛subscript𝑛1𝜏subscript𝑥𝑛subscript𝑦𝑛\varphi_{\varepsilon}((x_{n}))=\sum_{n=1}\tau(x_{n}y_{n}),italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ,

such that φ(x)=φ~(x)φε(x)+ε𝜑𝑥~𝜑𝑥subscript𝜑𝜀𝑥𝜀\varphi(x)=\tilde{\varphi}(x)\leq\varphi_{\varepsilon}(x)+\varepsilonitalic_φ ( italic_x ) = over~ start_ARG italic_φ end_ARG ( italic_x ) ≤ italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_x ) + italic_ε and (yn)n1N(Lp())subscriptsubscript𝑦𝑛𝑛superscriptsubscript1𝑁subscript𝐿𝑝(y_{n})_{n}\in\ell_{1}^{N}(L_{p}(\mathcal{M}))( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) with yn0subscript𝑦𝑛0y_{n}\geq 0italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0. On the other hand, we know from (i) that,

(yn)Lp(;1)subscriptnormsubscript𝑦𝑛subscript𝐿𝑝subscript1\displaystyle\|(y_{n})\|_{L_{p}(\mathcal{M};\ell_{1})}∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT=\displaystyle==supxLp(;)1|τ(xnyn)|subscriptsupremumsubscriptnorm𝑥subscript𝐿𝑝subscript1𝜏subscript𝑥𝑛subscript𝑦𝑛\displaystyle\sup_{\|x\|_{L_{p}(\mathcal{M};\ell_{\infty})}\leq 1}|\tau(x_{n}y%_{n})|roman_sup start_POSTSUBSCRIPT ∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 end_POSTSUBSCRIPT | italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) |
\displaystyle\leqsupx(Lp)1|τ(xnyn)|subscriptsupremumsubscriptnorm𝑥subscriptsubscript𝐿𝑝1𝜏subscript𝑥𝑛subscript𝑦𝑛\displaystyle\sup_{\|x\|_{\ell_{\infty}(L_{p})}\leq 1}|\tau(x_{n}y_{n})|roman_sup start_POSTSUBSCRIPT ∥ italic_x ∥ start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 end_POSTSUBSCRIPT | italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) |
\displaystyle\leqφε=1.normsubscript𝜑𝜀1\displaystyle\|\varphi_{\varepsilon}\|=1.∥ italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ∥ = 1 .

We obtain

(2.15)(xn)Lp(;)=φ(x)φε(x)+εsup{|τ(xnyn)|:yj0,(yn)Lp(;1N)1}+ε.\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}=\varphi(x)\leq\varphi_{%\varepsilon}(x)+\varepsilon\leq\sup\left\{|\tau\left(\sum x_{n}y_{n}\right)|:y%_{j}\geq 0,\|(y_{n})\|_{L_{p^{{}^{\prime}}}(\mathcal{M};\ell_{1}^{N})}\leq 1%\right\}+\varepsilon.∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = italic_φ ( italic_x ) ≤ italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_x ) + italic_ε ≤ roman_sup { | italic_τ ( ∑ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | : italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 0 , ∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } + italic_ε .

We then conclude (ii) by letting ε0𝜀0\varepsilon\rightarrow 0italic_ε → 0.

We now prove the other direction of (iii).Note that 1(Lp())subscript1subscript𝐿𝑝\ell_{1}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) is a sub-linear vector space of Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) equipped with a larger norm. So, for any bounded linear functional φ(Lp(;1))𝜑superscriptsubscript𝐿𝑝subscript1\varphi\in(L_{p}(\mathcal{M};\ell_{1}))^{*}italic_φ ∈ ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, its restriction on 1(Lp())subscript1subscript𝐿𝑝\ell_{1}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) defines a bounded linear functional φ~(1(Lp()))=(Lq())~𝜑superscriptsubscript1subscript𝐿𝑝subscriptsubscript𝐿𝑞\tilde{\varphi}\in(\ell_{1}(L_{p}(\mathcal{M})))^{*}=\ell_{\infty}(L_{q}(%\mathcal{M}))over~ start_ARG italic_φ end_ARG ∈ ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ). We conclude that there exists xn0,(xn)(Lq())formulae-sequencesubscript𝑥𝑛0subscript𝑥𝑛subscriptsubscript𝐿𝑞x_{n}\geq 0,(x_{n})\in\ell_{\infty}(L_{q}(\mathcal{M}))italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 , ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ) such that

(2.16)φ((yn))=n=1τ(xnyn),𝜑subscript𝑦𝑛superscriptsubscript𝑛1𝜏subscript𝑥𝑛subscript𝑦𝑛\displaystyle\varphi((y_{n}))=\sum_{n=1}^{\infty}\tau(x_{n}y_{n}),italic_φ ( ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ,

for all (yn)1(Lp())Lp(;1)subscript𝑦𝑛subscript1subscript𝐿𝑝subscript𝐿𝑝subscript1(y_{n})\in\ell_{1}(L_{p}(\mathcal{M}))\subset L_{p}(\mathcal{M};\ell_{1})( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ⊂ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). In particular, the expression (2.16) holds for any finite sequences (yn)Lp(;1)subscript𝑦𝑛subscript𝐿𝑝subscript1(y_{n})\in L_{p}(\mathcal{M};\ell_{1})( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). By (ii), we have

(xn)Lq(;)subscriptnormsubscript𝑥𝑛subscript𝐿𝑞subscript\displaystyle\|(x_{n})\|_{L_{q}(\mathcal{M};\ell_{\infty})}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT=\displaystyle==sup{τ(n=1xnyn);finitesequences(yn),ynLp(;1)1}supremum𝜏subscript𝑛1subscript𝑥𝑛subscript𝑦𝑛finitesequencessubscript𝑦𝑛subscriptnormsubscript𝑦𝑛subscript𝐿𝑝subscript11\displaystyle\sup\left\{\tau\left(\sum_{n=1}x_{n}y_{n}\right);{\rm finite\ %sequences}(y_{n}),\|y_{n}\|_{L_{p}(\mathcal{M};\ell_{1})}\leq 1\right\}roman_sup { italic_τ ( ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ; roman_finite roman_sequences ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , ∥ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 }
=\displaystyle==sup{φ((yn));finitesequences(yn),ynLp(;1)1}φ(Lp(;1)).supremum𝜑subscript𝑦𝑛finitesequencessubscript𝑦𝑛subscriptnormsubscript𝑦𝑛subscript𝐿𝑝subscript11subscriptnorm𝜑superscriptsubscript𝐿𝑝subscript1\displaystyle\sup\left\{\varphi((y_{n}));{\rm finite\ sequences}\ (y_{n}),\|y_%{n}\|_{L_{p}(\mathcal{M};\ell_{1})}\leq 1\right\}\leq\|\varphi\|_{(L_{p}(%\mathcal{M};\ell_{1}))^{*}}.roman_sup { italic_φ ( ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) ; roman_finite roman_sequences ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , ∥ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } ≤ ∥ italic_φ ∥ start_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .

3. Operator-Maximal Inequality

Let \mathcal{M}caligraphic_M be a semifinite von Neumann algebra, e.g. L(Ω)subscript𝐿ΩL_{\infty}(\Omega)italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( roman_Ω ) or B(H)𝐵𝐻B(H)italic_B ( italic_H ). Let Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) be the associated noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces, e.g. Lp(Ω)subscript𝐿𝑝ΩL_{p}(\Omega)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω ) or the Schatten classes Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT.Let Lp(,),1p<subscript𝐿𝑝1𝑝L_{p}(\mathbb{R},\mathcal{M}),1\leq p<\inftyitalic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , caligraphic_M ) , 1 ≤ italic_p < ∞ be the space of all Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M )-valued Bochner-measurable functions f𝑓fitalic_f on the real line such that

fLp(,Lp())=(f(x)pp𝑑x)1p=(τ[|f(x)|p]𝑑x)1p<.subscriptnorm𝑓superscript𝐿𝑝subscript𝐿𝑝superscriptsubscriptsuperscriptsubscriptnorm𝑓𝑥𝑝𝑝differential-d𝑥1𝑝superscriptsubscript𝜏delimited-[]superscript𝑓𝑥𝑝differential-d𝑥1𝑝\|f\|_{L^{p}(\mathbb{R},L_{p}(\mathcal{M}))}=\left(\int_{\mathbb{R}}\|f(x)\|_{%p}^{p}dx\right)^{\frac{1}{p}}=\left(\int_{\mathbb{R}}\tau\left[|f(x)|^{p}%\right]dx\right)^{\frac{1}{p}}<\infty.∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT = ( ∫ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ∥ italic_f ( italic_x ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d italic_x ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT = ( ∫ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT italic_τ [ | italic_f ( italic_x ) | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ] italic_d italic_x ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT < ∞ .

We prove the following operator Hardy-Littlewood maximal inequality for fLp(,Lp())𝑓subscript𝐿𝑝subscript𝐿𝑝f\in L_{p}(\mathbb{R},L_{p}(\mathcal{M}))italic_f ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) where 2p<2𝑝2\leq p<\infty2 ≤ italic_p < ∞. The corresponding result for p=𝑝p=\inftyitalic_p = ∞ is trivial.

Theorem 3.1.

Given fLp(,Lp())𝑓subscript𝐿𝑝subscript𝐿𝑝f\in L_{p}(\mathbb{R},L_{p}(\mathcal{M}))italic_f ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) for some 2p<2𝑝2\leq p<\infty2 ≤ italic_p < ∞, there exists a Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M )-valued Bochner-measurable function F𝐹Fitalic_F such that

(i) 12txtx+t|f(y)|𝑑yF(x)12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦𝐹𝑥\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\leq F(x)divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ≤ italic_F ( italic_x ) as operators for all t>0𝑡0t>0italic_t > 0, i.e. F12txtx+t|f(y)|𝑑y0𝐹12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦0F-\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\geq 0italic_F - divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ≥ 0 almost everywhere.

(ii) There exists an absolute constant c𝑐citalic_c such that

(3.1)FLp(,Lp())cfLp(,Lp()).subscriptnorm𝐹superscript𝐿𝑝subscript𝐿𝑝𝑐subscriptnorm𝑓superscript𝐿𝑝subscript𝐿𝑝\displaystyle\|F\|_{L^{p}(\mathbb{R},L_{p}(\mathcal{M}))}\leq c\|f\|_{L^{p}(%\mathbb{R},L_{p}(\mathcal{M}))}.∥ italic_F ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT ≤ italic_c ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT .

In order to prove main theorem, we prove the dual form of Theorem 3.1. Let 𝒩𝒩\mathcal{N}caligraphic_N be the von Neumann algebra tensor product L()tensor-productsubscript𝐿L_{\infty}(\mathbb{R})\otimes\mathcal{M}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( blackboard_R ) ⊗ caligraphic_M equipped with the semifinite trace ν=τ𝜈tensor-product𝜏\nu=\int\otimes\tauitalic_ν = ∫ ⊗ italic_τ. Then, Lp(,)subscript𝐿𝑝L_{p}(\mathbb{R},\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , caligraphic_M ) coincides with the noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces Lp()subscript𝐿𝑝L_{p}({\mathbb{N}})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ) associated with the pair (,ν)𝜈({\mathbb{N}},\nu)( blackboard_N , italic_ν ) for 1p<1𝑝1\leq p<\infty1 ≤ italic_p < ∞. Let Tn,n>0subscript𝑇𝑛𝑛0T_{n},n>0italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_n > 0 be the averaging operator on Lp()Lp()tensor-productsubscript𝐿𝑝subscript𝐿𝑝L_{p}(\mathbb{R})\otimes L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R ) ⊗ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) defined by

(Tnf)(x)=12n+1x2nx+2nf(t)𝑑tsubscript𝑇𝑛𝑓𝑥1superscript2𝑛1superscriptsubscript𝑥superscript2𝑛𝑥superscript2𝑛𝑓𝑡differential-d𝑡\displaystyle(T_{n}f)(x)=\frac{1}{2^{n+1}}\int_{x-2^{n}}^{x+2^{n}}f(t)\,dt( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) ( italic_x ) = divide start_ARG 1 end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_x - 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_f ( italic_t ) italic_d italic_t

It is easy to verify that {Tn}nsubscriptsubscript𝑇𝑛𝑛\{T_{n}\}_{n\in\mathbb{Z}}{ italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT is a family of operators from L2(𝒩)L2(𝒩)subscript𝐿2𝒩subscript𝐿2𝒩L_{2}(\mathcal{N})\to L_{2}(\mathcal{N})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) → italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) satisfying

  • Tn=Tnsubscript𝑇𝑛superscriptsubscript𝑇𝑛T_{n}=T_{n}^{*}italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT;

  • Tng0subscript𝑇𝑛𝑔0T_{n}g\geq 0italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g ≥ 0 if g0𝑔0g\geq 0italic_g ≥ 0;

  • TnTm2Tσ(m)subscript𝑇𝑛subscript𝑇𝑚2subscript𝑇𝜎𝑚T_{n}T_{m}\leq 2T_{\sigma(m)}italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≤ 2 italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT for σ(m)=m+1𝜎𝑚𝑚1\sigma(m)=m+1italic_σ ( italic_m ) = italic_m + 1 and any nm𝑛𝑚n\leq mitalic_n ≤ italic_m.

Lemma 3.2.

For any finite sequence gnL2(𝒩)subscript𝑔𝑛subscript𝐿2𝒩g_{n}\in L_{2}(\mathcal{N})italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) with all gn0subscript𝑔𝑛0g_{n}\geq 0italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, we have

(3.2)(Tngn)L2(𝒩;1)4(gn)L2(𝒩;1).subscriptnormsubscript𝑇𝑛subscript𝑔𝑛subscript𝐿2𝒩subscript14subscriptnormsubscript𝑔𝑛subscript𝐿2𝒩subscript1\|(T_{n}g_{n})\|_{L_{2}(\mathcal{N};\ell_{1})}\leq 4\|(g_{n})\|_{L_{2}(%\mathcal{N};\ell_{1})}.∥ ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 4 ∥ ( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT .
Proof.

Given a positive sequence (gn)nL2()subscriptsubscript𝑔𝑛𝑛subscript𝐿2(g_{n})_{n}\in L_{2}({\mathbb{N}})( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_N ) with only finitely many non-zero terms and a bijection α𝛼\alphaitalic_α on \mathbb{Z}blackboard_Z, we have that for σ(m)=m+1𝜎𝑚𝑚1\sigma(m)=m+1italic_σ ( italic_m ) = italic_m + 1,

nTngα(n)L2(𝒩)2superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(\mathcal{N})}^{2}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT=ν(n,mTngα(n)Tmgα(m))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=\nu\left(\sum_{n,m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n , italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
=ν(n<mTngα(n)Tmgα(m))+ν(nmTngα(n)Tmgα(m))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=\nu\left(\sum_{n<m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)+%\nu\left(\sum_{n\geq m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n < italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) + italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≥ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
(bythetracialpropertyofν)bythetracialpropertyof𝜈\displaystyle({\rm by\ the\ tracial\ property\ of}\ \nu)( roman_by roman_the roman_tracial roman_property roman_of italic_ν )=ν(n<mTngα(n)Tmgα(m))+ν(nmTmgα(m)Tngα(n))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚𝜈subscript𝑛𝑚subscript𝑇𝑚subscript𝑔𝛼𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛\displaystyle=\nu\left(\sum_{n<m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)+%\nu\left(\sum_{n\geq m}T_{m}g_{\alpha(m)}T_{n}g_{\alpha(n)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n < italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) + italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≥ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT )
=ν(n<mTngα(n)Tmgα(m))+ν(nmTngα(n)Tmgα(m))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=\nu\left(\sum_{n<m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)+%\nu\left(\sum_{n\leq m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n < italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) + italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )

Note that ν(nTngα(n)Tngα(n))0𝜈subscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛0\nu\left(\sum_{n}T_{n}g_{\alpha(n)}T_{n}g_{\alpha(n)}\right)\geq 0italic_ν ( ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ) ≥ 0. So, we have that

nTngα(n)L2(𝒩)2superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(\mathcal{N})}^{2}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT2ν(nmTngα(n)Tmgα(m))absent2𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle\leq 2\nu\left(\sum_{n\leq m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)≤ 2 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
=2ν(nmgα(n)TnTmgα(m))absent2𝜈subscript𝑛𝑚subscript𝑔𝛼𝑛subscript𝑇𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=2\nu\left(\sum_{n\leq m}g_{\alpha(n)}T_{n}T_{m}g_{\alpha(m)}\right)= 2 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
4ν(nmgα(n)Tσ(m)gα(m)).absent4𝜈subscript𝑛𝑚subscript𝑔𝛼𝑛subscript𝑇𝜎𝑚subscript𝑔𝛼𝑚\displaystyle\leq 4~{}\nu\left(\sum_{n\leq m}g_{\alpha(n)}T_{\sigma(m)}g_{%\alpha(m)}\right).≤ 4 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) .

By the tracial property of ν𝜈\nuitalic_ν, we have that ν(ab)=ν(b12ab12)0𝜈𝑎𝑏𝜈superscript𝑏12𝑎superscript𝑏120\nu(ab)=\nu(b^{\frac{1}{2}}ab^{\frac{1}{2}})\geq 0italic_ν ( italic_a italic_b ) = italic_ν ( italic_b start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_a italic_b start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ) ≥ 0 for any a,b0𝑎𝑏0a,b\geq 0italic_a , italic_b ≥ 0. So

nTngα(n)L2(𝒩)2superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(\mathcal{N})}^{2}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4ν(n,mgα(n)Tσ(m)gα(m))absent4𝜈subscript𝑛𝑚subscript𝑔𝛼𝑛subscript𝑇𝜎𝑚subscript𝑔𝛼𝑚\displaystyle\leq 4~{}\nu\left(\sum_{n,m}g_{\alpha(n)}T_{\sigma(m)}g_{\alpha(m%)}\right)≤ 4 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n , italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
4ν((ngα(n))(mTσ(m)gα(m)))absent4𝜈subscript𝑛subscript𝑔𝛼𝑛subscript𝑚subscript𝑇𝜎𝑚subscript𝑔𝛼𝑚\displaystyle\leq 4~{}\nu\left(\left(\sum_{n}g_{\alpha(n)}\right)\left(\sum_{m%}T_{\sigma(m)}g_{\alpha(m)}\right)\right)≤ 4 italic_ν ( ( ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ) ( ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) )
=4ν((ngn))(mTmgσ1α(m)))\displaystyle=4~{}\nu\left(\left(\sum_{n}g_{n})\right)\left(\sum_{m}T_{m}g_{%\sigma^{-1}\alpha(m)}\right)\right)= 4 italic_ν ( ( ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) ( ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) )
4ngnL2(𝒩)mTmgσ1α(m)L2(𝒩).absent4subscriptnormsubscript𝑛subscript𝑔𝑛subscript𝐿2𝒩subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔superscript𝜎1𝛼𝑚subscript𝐿2𝒩\displaystyle\leq 4~{}\left\|\sum_{n}g_{n}\right\|_{L_{2}(\mathcal{N})}~{}%\left\|\sum_{m}T_{m}g_{\sigma^{-1}\alpha(m)}\right\|_{L_{2}(\mathcal{N})}.≤ 4 ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT .

Now, taking the supremum over all bijections α𝛼\alphaitalic_α on both sides, we get

supαnTngα(n)L2(𝒩)2subscriptsupremum𝛼superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\sup_{\alpha}\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(%\mathcal{N})}^{2}roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4ngnL2(𝒩)supαmTmgσ1α(m)L2(𝒩)absent4subscriptnormsubscript𝑛subscript𝑔𝑛subscript𝐿2𝒩subscriptsupremum𝛼subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔superscript𝜎1𝛼𝑚subscript𝐿2𝒩\displaystyle\leq 4\left\|\sum_{n}g_{n}\right\|_{L_{2}(\mathcal{N})}\sup_{%\alpha}\left\|\sum_{m}T_{m}g_{\sigma^{-1}\alpha(m)}\right\|_{L_{2}(\mathcal{N})}≤ 4 ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT
=4ngnL2(𝒩)supαmTmgα(m)L2(𝒩)absent4subscriptnormsubscript𝑛subscript𝑔𝑛subscript𝐿2𝒩subscriptsupremum𝛼subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔𝛼𝑚subscript𝐿2𝒩\displaystyle=4\left\|\sum_{n}g_{n}\right\|_{L_{2}(\mathcal{N})}\sup_{\alpha}%\left\|\sum_{m}T_{m}g_{\alpha(m)}\right\|_{L_{2}(\mathcal{N})}= 4 ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT

By dividing the finite number supαmTmgα(m)L2(𝒩)subscriptsupremum𝛼subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔𝛼𝑚subscript𝐿2𝒩\sup_{\alpha}\|\sum_{m}T_{m}g_{\alpha(m)}\|_{L_{2}(\mathcal{N})}roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT on both sides, we get (3.2).∎

Note that {Tn}nsubscriptsubscript𝑇𝑛𝑛\{T_{n}\}_{n\in\mathbb{Z}}{ italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT is a family of positive-preserving contractions on L1(𝒩)subscript𝐿1𝒩L_{1}(\mathcal{N})italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( caligraphic_N ). Lemma 3.2 holds trivially if we replace L2()subscript𝐿2L_{2}({\mathbb{N}})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_N ) with L1()subscript𝐿1L_{1}({\mathbb{N}})italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_N ). We show that this remains true if we replace L2()subscript𝐿2L_{2}({\mathbb{N}})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_N ) with Lp()subscript𝐿𝑝L_{p}({\mathbb{N}})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ) for all 1<p<21𝑝21<p<21 < italic_p < 2.We need the following Cauchy-Schwartz inequality. We include a proof for completeness.

Lemma 3.3.

Suppose anLq(𝒩,ν),bnLr(𝒩,ν)formulae-sequencesubscript𝑎𝑛subscript𝐿𝑞𝒩𝜈subscript𝑏𝑛subscript𝐿𝑟𝒩𝜈a_{n}\in L_{q}(\mathcal{N},\nu),b_{n}\in L_{r}(\mathcal{N},\nu)italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_N , italic_ν ) , italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( caligraphic_N , italic_ν ). Then,we have

(3.3)n=1NTn(anbn)pn=1NTn(anan)qn=1NTn(bnbn)r.subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛𝑞subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛𝑟\left\|\sum_{n=1}^{N}T_{n}(a_{n}^{*}b_{n})\right\|_{p}\leq\left\|\sum_{n=1}^{N%}T_{n}(a_{n}^{*}a_{n})\right\|_{q}~{}\left\|\sum_{n=1}^{N}T_{n}(b_{n}^{*}b_{n}%)\right\|_{r}.∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT .

In particular,

(3.4)n=1NTn(anbn)pn=1NTn(anan)pn=1NTn(bnbn)p.subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛𝑝\left\|\sum_{n=1}^{N}T_{n}(a_{n}^{*}b_{n})\right\|_{p}\leq\left\|\sum_{n=1}^{N%}T_{n}(a_{n}^{*}a_{n})\right\|_{p}~{}\left\|\sum_{n=1}^{N}T_{n}(b_{n}^{*}b_{n}%)\right\|_{p}.∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT .
Proof.

Let Xn=(anbn00)subscript𝑋𝑛matrixsubscript𝑎𝑛subscript𝑏𝑛00X_{n}=\begin{pmatrix}a_{n}&b_{n}\\0&0\end{pmatrix}italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ). Then we have

XnXn=(anananbnbnanbnbn).superscriptsubscript𝑋𝑛subscript𝑋𝑛matrixsuperscriptsubscript𝑎𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛subscript𝑎𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛X_{n}^{*}X_{n}=\begin{pmatrix}a_{n}^{*}a_{n}&a_{n}^{*}b_{n}\\b_{n}^{*}a_{n}&b_{n}^{*}b_{n}\end{pmatrix}.italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ) .

This implies that

(n=1NTn(anan)n=1NTn(anbn)n=1NTn(ban)n=1NTn(bnbn))=(αγγβ)0.matrixsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛superscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑛1𝑁subscript𝑇𝑛superscript𝑏subscript𝑎𝑛superscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛matrix𝛼𝛾superscript𝛾𝛽0\begin{pmatrix}\sum_{n=1}^{N}T_{n}(a_{n}^{*}a_{n})&\sum_{n=1}^{N}T_{n}(a_{n}^{%*}b_{n})\\\sum_{n=1}^{N}T_{n}(b^{*}a_{n})&\sum_{n=1}^{N}T_{n}(b_{n}^{*}b_{n})\end{%pmatrix}=\begin{pmatrix}\alpha&\gamma\\\gamma^{*}&\beta\end{pmatrix}\geq 0.( start_ARG start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ) = ( start_ARG start_ROW start_CELL italic_α end_CELL start_CELL italic_γ end_CELL end_ROW start_ROW start_CELL italic_γ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_CELL start_CELL italic_β end_CELL end_ROW end_ARG ) ≥ 0 .

Then, by [1, Prop. 1.3.2], there exists a contraction y𝑦yitalic_y such that γ=α12yβ12𝛾superscript𝛼12𝑦superscript𝛽12\gamma=\alpha^{\frac{1}{2}}y\beta^{\frac{1}{2}}italic_γ = italic_α start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_y italic_β start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT.Thus by Hölder’s inequality,

n=1NTn(anbn)p=γp=α12yβ12pα12qβ12r.subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛𝑝subscriptnorm𝛾𝑝subscriptnormsuperscript𝛼12𝑦superscript𝛽12𝑝subscriptnormsuperscript𝛼12𝑞subscriptnormsuperscript𝛽12𝑟\left\|\sum_{n=1}^{N}T_{n}(a_{n}^{*}b_{n})\right\|_{p}=\|\gamma\|_{p}=\|\alpha%^{\frac{1}{2}}y\beta^{\frac{1}{2}}\|_{p}\leq\|\alpha^{\frac{1}{2}}\|_{q}\|%\beta^{\frac{1}{2}}\|_{r}.∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ∥ italic_γ ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ∥ italic_α start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_y italic_β start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ italic_α start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ italic_β start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT .

The lemma is proved.∎

Lemma 3.4.

Under the same assumption of Lemma 3.2, we have that,

(3.5)(Tngn)Lp(𝒩;1)422p(gn)Lp(𝒩;1).subscriptnormsubscript𝑇𝑛subscript𝑔𝑛subscript𝐿𝑝𝒩subscript1superscript422𝑝subscriptnormsubscript𝑔𝑛subscript𝐿𝑝𝒩subscript1\|(T_{n}g_{n})\|_{L_{p}(\mathcal{N};\ell_{1})}\leq 4^{2-\frac{2}{p}}\|(g_{n})%\|_{L_{p}(\mathcal{N};\ell_{1})}.∥ ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 4 start_POSTSUPERSCRIPT 2 - divide start_ARG 2 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ∥ ( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT .

for all finite sequences (gn)Lp(𝒩;1)subscript𝑔𝑛subscript𝐿𝑝𝒩subscript1(g_{n})\in L_{p}(\mathcal{N};\ell_{1})( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), gn0subscript𝑔𝑛0g_{n}\geq 0italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, 1p21𝑝21\leq p\leq 21 ≤ italic_p ≤ 2.

Proof.

Assume that n=1Ngnp=1subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑔𝑛𝑝1\|\sum_{n=1}^{N}~{}g_{n}\|_{p}=1∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 1. Let g=(n=1Ngn)1