A Direct Proof for Operator Hardy-Littlewood Maximal Inequality (2024)

\stackMath

Chian Yeong ChuahDepartment of Mathematics
The Ohio State University
231 West 18th Avenue
Columbus, OH 43210-1174, USA
ORCid:0000-0003-3776-6555
chuah.21@osu.edu
,Zhen-Chuan LiuDepartamento de Matemáticas
Universidad Autónoma de Madrid
C/ Francisco Tomás y Valiente, 7 Facultad de Ciencias, módulo 17, 28049 Madrid,Spain.
ORCid: 0000-0002-6092-5473
liu.zhenchuan@uam.es
and Tao MeiDepartment of Mathematics
Baylor University
1301 S University Parks Dr, Waco, TX 76798, USA.
ORCid: 0000-0001-6191-6184
tao_mei@baylor.edu

Abstract.

We give a direct proof of the operator valued Hardy-Littlewood maximal inequality for 2p<2𝑝2\leq p<\infty2 ≤ italic_p < ∞, which was first proved in [7].

Key words and phrases:

Maximal Inequality, Schatten p𝑝pitalic_p-class, von Neumann Algebra, Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-Space

2010 Mathematics Subject Classification:

Primary: 46B28, 46L52. Secondary: 42A45.

1. Introduction

The operator valued Hardy-Littlewood maximal inequality ([7]) has become a basic tool in the study of noncommutative analysis. See e.g. [2, 4, 8] for the recent works which apply this inequality.

The original proof of the inequality contained in [7] reduces the problem to the martingale case where the noncommutative Doob’s maximal inequality due to M. Junge ([5]) is applied. G. Hong reproved this maximal inequality in [3]. He follows Stein’s idea of dominating the Hardy-Littlewood maximal function by maximal averages of heat semigroup operators and applies the noncommutative maximal ergodic theory due to M. Junge and Q. Xu ([6]). Both proofs are indirect which prevent researchers, who are not familiar with the terminology of noncommutative analysis from a good understanding of the theorem. The purpose of this article is to provide a direct and more understandable proof of this inequality for the case p2𝑝2p\geq 2italic_p ≥ 2.

Recall that, for a locally integrable function f𝑓fitalic_f, the Hardy-Littlewood maximal function is defined as

Mf(x)=supt12tI(x,t)|f(y)|𝑑y,𝑀𝑓𝑥subscriptsupremum𝑡12𝑡subscript𝐼𝑥𝑡𝑓𝑦differential-d𝑦Mf(x)=\sup_{t}\frac{1}{2t}\int_{I(x,t)}|f(y)|dy,italic_M italic_f ( italic_x ) = roman_sup start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_I ( italic_x , italic_t ) end_POSTSUBSCRIPT | italic_f ( italic_y ) | italic_d italic_y ,

where I(x,t)𝐼𝑥𝑡I(x,t)italic_I ( italic_x , italic_t ) is the interval centered at x𝑥xitalic_x with length 2t.2𝑡2t.2 italic_t . The classical Hardy-Littlewood maximal inequality states that

(1.1)MfLpcpp1fLp,subscriptnorm𝑀𝑓superscript𝐿𝑝𝑐𝑝𝑝1subscriptnorm𝑓superscript𝐿𝑝\displaystyle\|Mf\|_{L^{p}}\leq c\frac{p}{p-1}\|f\|_{L^{p}},∥ italic_M italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p end_ARG start_ARG italic_p - 1 end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ,

for all fLp(),1<pformulae-sequence𝑓superscript𝐿𝑝1𝑝f\in L^{p}(\mathbb{R}),1<p\leq\inftyitalic_f ∈ italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R ) , 1 < italic_p ≤ ∞.

Let X𝑋Xitalic_X be a Banach space, for X-valued functions f𝑓fitalic_f, their maximal function Mf𝑀𝑓Mfitalic_M italic_f can be defined by considering the maximal function of the norm of f𝑓fitalic_f,

(1.2)Mf(x)=supt12tI(x,t)f(y)X𝑑y.𝑀𝑓𝑥subscriptsupremum𝑡12𝑡subscript𝐼𝑥𝑡subscriptnorm𝑓𝑦𝑋differential-d𝑦\displaystyle Mf(x)=\sup_{t}\frac{1}{2t}\int_{I(x,t)}\|f(y)\|_{X}dy.italic_M italic_f ( italic_x ) = roman_sup start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_I ( italic_x , italic_t ) end_POSTSUBSCRIPT ∥ italic_f ( italic_y ) ∥ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_d italic_y .

Apply the classical Hardy-Littlewood maximal inequality to the Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT function fXsubscriptnorm𝑓𝑋\|f\|_{X}∥ italic_f ∥ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, one obtains that

(1.3)MfLp(X)cpp1fLp(X)=(fXp)1p,subscriptnorm𝑀𝑓superscript𝐿𝑝𝑋𝑐𝑝𝑝1subscriptnorm𝑓superscript𝐿𝑝𝑋superscriptsubscriptsuperscriptsubscriptnorm𝑓𝑋𝑝1𝑝\displaystyle\|Mf\|_{L^{p}(X)}\leq c\frac{p}{p-1}\|f\|_{L^{p}(X)}=(\int_{%\mathbb{R}}\|f\|_{X}^{p})^{\frac{1}{p}},∥ italic_M italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p end_ARG start_ARG italic_p - 1 end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_X ) end_POSTSUBSCRIPT = ( ∫ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ∥ italic_f ∥ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ,

for all fLp(,X),1<pformulae-sequence𝑓superscript𝐿𝑝𝑋1𝑝f\in L^{p}(\mathbb{R},X),1<p\leq\inftyitalic_f ∈ italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_X ) , 1 < italic_p ≤ ∞. A shortcoming is that this type of maximal function is scalar-valued and may lose a lot of information of X𝑋Xitalic_X that f𝑓fitalic_f originally carried.

When X=Lp(Ω)𝑋superscript𝐿𝑝ΩX=L^{p}(\Omega)italic_X = italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( roman_Ω ) with ΩΩ\Omegaroman_Ω a measurable space, one may define a X𝑋Xitalic_X-valued maximal function F𝐹Fitalic_F as

(1.4)F(x,ω)=12tI(x,t)|f(y,ω)|𝑑y,𝐹𝑥𝜔12𝑡subscript𝐼𝑥𝑡𝑓𝑦𝜔differential-d𝑦\displaystyle F(x,\omega)=\frac{1}{2t}\int_{I(x,t)}|f(y,\omega)|dy,italic_F ( italic_x , italic_ω ) = divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_I ( italic_x , italic_t ) end_POSTSUBSCRIPT | italic_f ( italic_y , italic_ω ) | italic_d italic_y ,

and deduce from (1.3) that

(1.5)FLp(,Lp(Ω))cpp1fLp(,Lp(Ω)).subscriptnorm𝐹superscript𝐿𝑝superscript𝐿𝑝Ω𝑐𝑝𝑝1subscriptnorm𝑓superscript𝐿𝑝superscript𝐿𝑝Ω\displaystyle\|F\|_{L^{p}(\mathbb{R},L^{p}(\Omega))}\leq c\frac{p}{p-1}\|f\|_{%L^{p}(\mathbb{R},L^{p}(\Omega))}.∥ italic_F ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( roman_Ω ) ) end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p end_ARG start_ARG italic_p - 1 end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( roman_Ω ) ) end_POSTSUBSCRIPT .

Note that in (1.4), F𝐹Fitalic_F is a X𝑋Xitalic_X-valued function that dominates the average of |f|𝑓|f|| italic_f | pointwisely, while in (1.2), Mf𝑀𝑓Mfitalic_M italic_f is merely a scalar valued function that carries much less information. Can similar results like (1.4) and (1.5) hold for X𝑋Xitalic_X-valued functions when the Banach space X𝑋Xitalic_X is not equipped with a total order but still has a reasonable partial order, e.g. for X=𝑋absentX=italic_X = the Schatten p𝑝pitalic_p classes?Based on G. Pisier’s work on operator spaces and M. Junge and Junge/Xu’s work on the theory of noncommutative martingales, T. Mei ([7]) proved a maximal inequality like (1.5) for X𝑋Xitalic_X being the noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. In the case that X=𝑋absentX=italic_X = the Schatten p𝑝pitalic_p-class Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and fLp(Sp)𝑓subscript𝐿𝑝subscript𝑆𝑝f\in L_{p}({S_{p}})italic_f ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) for some 1<p1𝑝1<p\leq\infty1 < italic_p ≤ ∞, this operator-maximal inequality says that there exists a Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-valued function F𝐹Fitalic_F such that

(i) 12txtx+t|f(y)|𝑑yF(x)12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦𝐹𝑥\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\leq F(x)divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ≤ italic_F ( italic_x ) as operators for all t>0𝑡0t>0italic_t > 0, i.e. F12txtx+t|f(y)|𝑑ySp𝐹12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦superscript𝑆𝑝F-\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\in S^{p}italic_F - divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ∈ italic_S start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is a self adjoint positive definite operator almost everywhere.

(ii) There exists an absolute constant c𝑐citalic_c such that

(1.6)FLp(Sp)cp2(p1)2fLp(Sp).subscriptnorm𝐹superscript𝐿𝑝superscript𝑆𝑝𝑐superscript𝑝2superscript𝑝12subscriptnorm𝑓superscript𝐿𝑝superscript𝑆𝑝\displaystyle\|F\|_{L^{p}(S^{p})}\leq c\frac{p^{2}}{(p-1)^{2}}\|f\|_{L^{p}(S^{%p})}.∥ italic_F ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ italic_c divide start_ARG italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_p - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT .

A main obstacle for the proof of (1.6) is the lack of a total order. This was overcome by M. Junge using G. Pisier’s duality result for the operator spaces Lp()subscript𝐿𝑝subscriptL_{p}(\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) and Lp(1)subscript𝐿𝑝subscript1L_{p}(\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). This article aims togive a direct proof for (1.6) and a more understandable proof of Pisier’s duality result (Lemma 2.2) for analysts who are not familiar with operator spaces.

2. Preliminary

Let H𝐻Hitalic_H be a separable Hilbert space. We denote the space of bounded linear operators on H𝐻Hitalic_H by B(H)𝐵𝐻B(H)italic_B ( italic_H ). For xB(H)𝑥𝐵𝐻x\in B(H)italic_x ∈ italic_B ( italic_H ), we denote by xsuperscript𝑥x^{*}italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT the adjoint operator of x𝑥xitalic_x, and define |x|p=(xx)p2superscript𝑥𝑝superscriptsuperscript𝑥𝑥𝑝2|x|^{p}=(x^{*}x)^{\frac{p}{2}}| italic_x | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT = ( italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_x ) start_POSTSUPERSCRIPT divide start_ARG italic_p end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT by the functional calculus for 0<p<0𝑝0<p<\infty0 < italic_p < ∞. We say that xB(H)𝑥𝐵𝐻x\in B(H)italic_x ∈ italic_B ( italic_H ) is self-adjoint if x=x𝑥superscript𝑥x=x^{*}italic_x = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. We say a self-adjoint operator x𝑥xitalic_x is positive, denoted by x0𝑥0x\geq 0italic_x ≥ 0 if

(2.1)xe,e0,𝑥𝑒𝑒0\displaystyle\langle xe,e\rangle\geq 0,⟨ italic_x italic_e , italic_e ⟩ ≥ 0 ,

for all eH𝑒𝐻e\in Hitalic_e ∈ italic_H. This is equivalent to saying that x=yy𝑥superscript𝑦𝑦x=y^{*}yitalic_x = italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_y for some yB(H)𝑦𝐵𝐻y\in B(H)italic_y ∈ italic_B ( italic_H ). For two self-adjoint x,yB(H)𝑥𝑦𝐵𝐻x,y\in B(H)italic_x , italic_y ∈ italic_B ( italic_H ), we write xy𝑥𝑦x\leq yitalic_x ≤ italic_y if yx0𝑦𝑥0y-x\geq 0italic_y - italic_x ≥ 0.The Schatten p𝑝pitalic_p-classes Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, 0<p<0𝑝0<p<\infty0 < italic_p < ∞ are the spaces of xB(H)𝑥𝐵𝐻x\in B(H)italic_x ∈ italic_B ( italic_H ) so that

xp=(tr|x|p)1p<.subscriptnorm𝑥𝑝superscript𝑡𝑟superscript𝑥𝑝1𝑝\|x\|_{p}=(tr|x|^{p})^{\frac{1}{p}}<\infty.∥ italic_x ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ( italic_t italic_r | italic_x | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT < ∞ .

Here, tr𝑡𝑟tritalic_t italic_r is the usual trace tr(x)=kxek,ek𝑡𝑟𝑥subscript𝑘𝑥subscript𝑒𝑘subscript𝑒𝑘tr(x)=\sum_{k}\langle xe_{k},e_{k}\rangleitalic_t italic_r ( italic_x ) = ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⟨ italic_x italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⟩ for x0B(H)𝑥0𝐵𝐻x\geq 0\in B(H)italic_x ≥ 0 ∈ italic_B ( italic_H ). TheSchatten p𝑝pitalic_p classes share many properties with the psubscript𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces of sequences. In particular, Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT are Banach spaces for p1𝑝1p\geq 1italic_p ≥ 1 and B(H)𝐵𝐻B(H)italic_B ( italic_H ) (resp. Sqsubscript𝑆𝑞S_{q}italic_S start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT) is the dual space of S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (resp. Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for 1<p,q<,1p+1qformulae-sequence1𝑝𝑞1𝑝1𝑞1<p,q<\infty,\frac{1}{p}+\frac{1}{q}1 < italic_p , italic_q < ∞ , divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_q end_ARG), via the isometric isomorphism,

xϕx:ϕx(y)=tr(xy):maps-to𝑥subscriptitalic-ϕ𝑥subscriptitalic-ϕ𝑥𝑦𝑡𝑟𝑥𝑦x\mapsto\phi_{x}:\phi_{x}(y)=tr(xy)italic_x ↦ italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT : italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_y ) = italic_t italic_r ( italic_x italic_y )

for yS1𝑦subscript𝑆1y\in S_{1}italic_y ∈ italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (resp. Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT).

2.1. Noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces

A von Neumann algebra, by definition, is a weak-* closed subalgebras \mathcal{M}caligraphic_M of B(H)𝐵𝐻B(H)italic_B ( italic_H ).The completeness according to the weak *-topology of \mathcal{M}caligraphic_M ensures that it contains the spectral projections of its self-adjoint elements. ()subscript\ell_{\infty}({\mathbb{N}})roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( blackboard_N ) which is isometrically isomorphic to the subalgebras of the diagonal operators and B(H)𝐵𝐻B(H)italic_B ( italic_H ) itself are two basic examples of von Neumann algebras.The usual trace τ=tr𝜏𝑡𝑟\tau=tritalic_τ = italic_t italic_r on B(H)𝐵𝐻B(H)italic_B ( italic_H ) is a linear functional on the weak-* dense subspace S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT satisfying the following properties,

  • i)

    Tracial: τ(xy)=τ(xy)𝜏𝑥𝑦𝜏𝑥𝑦\tau(xy)=\tau(xy)italic_τ ( italic_x italic_y ) = italic_τ ( italic_x italic_y ),

  • ii)

    Faithful: if x0𝑥0x\geq 0italic_x ≥ 0 and τ(x)=0𝜏𝑥0\tau(x)=0italic_τ ( italic_x ) = 0 then x=0𝑥0x=0italic_x = 0,

  • iii)

    Lower semi-continuous: τ(supxi)=supτ(xi)𝜏supremumsubscript𝑥𝑖supremum𝜏subscript𝑥𝑖\tau(\sup x_{i})=\sup\tau(x_{i})italic_τ ( roman_sup italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = roman_sup italic_τ ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) when xi0subscript𝑥𝑖0x_{i}\geq 0italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 0 is increasing,

  • iv)

    Semifinite: for any x0𝑥0x\geq 0italic_x ≥ 0, there exists 0yx0𝑦𝑥0\leq y\leq x0 ≤ italic_y ≤ italic_x such that τ(y)<𝜏𝑦\tau(y)<\inftyitalic_τ ( italic_y ) < ∞.

This leads to defining semifinite von Neumann algebras \mathcal{M}caligraphic_M as those equipped with a trace τ𝜏\tauitalic_τ, which is an unbounded linear functional satisfying (i)-(iv) for x,y𝑥𝑦x,yitalic_x , italic_y belonging to a weak * dense subspace. Note the restriction of the usual trace of B(H)𝐵𝐻B(H)italic_B ( italic_H ) on \mathcal{M}caligraphic_M may not be semifinite, and not every von Neumann algebras is semifinite. Given such a pair (,τ)𝜏(\mathcal{M},\tau)( caligraphic_M , italic_τ ) (which is usually viewed as a noncommutative Lsubscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT- space) the noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces associated to it are the completion of f𝑓f\in{\mathcal{M}}italic_f ∈ caligraphic_M with finite quasi norm

fp=[τ(|f|p)]1pfor0<p<,formulae-sequencesubscriptnorm𝑓𝑝superscriptdelimited-[]𝜏superscript𝑓𝑝1𝑝for0𝑝\|f\|_{p}\,=\,\left[\tau\left(|f|^{p}\right)\right]^{\frac{1}{p}}\quad\mbox{%for}\quad 0<p<\infty,∥ italic_f ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = [ italic_τ ( | italic_f | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT for 0 < italic_p < ∞ ,

where |f|p=(ff)p/2superscript𝑓𝑝superscriptsuperscript𝑓𝑓𝑝2|f|^{p}=(f^{*}f)^{p/2}| italic_f | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT = ( italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_f ) start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT is constructed via functional calculus. We set L()=subscript𝐿L_{\infty}(\mathcal{M})=\mathcal{M}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( caligraphic_M ) = caligraphic_M.

The Schatten p𝑝pitalic_p-classes Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and the Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces on a semifinite measure space (Ω,μ)Ω𝜇(\Omega,\mu)( roman_Ω , italic_μ ) are examples of noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces associated with =B(H)𝐵𝐻\mathcal{M}=B(H)caligraphic_M = italic_B ( italic_H ) and =L(Ω,μ)subscript𝐿Ω𝜇{\mathcal{M}}=L_{\infty}(\Omega,\mu)caligraphic_M = italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) respectively. Another basic example arises from group von Neumann algebras. Every commutative semifinite von Neumann algebra is isometrically isomorphic to the space L(Ω,μ)subscript𝐿Ω𝜇L_{\infty}(\Omega,\mu)italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) of essentially bounded functions on some semifinite measure space (Ω,μ)Ω𝜇(\Omega,\mu)( roman_Ω , italic_μ ).Many basic properties of Lp(Ω,μ)subscript𝐿𝑝Ω𝜇L_{p}(\Omega,\mu)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) extend to Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ). In particular, one has the Hölder’s inequality which states that

xypxryq,subscriptnorm𝑥𝑦𝑝subscriptnorm𝑥𝑟subscriptnorm𝑦𝑞\displaystyle\|xy\|_{p}\leq\|x\|_{r}\|y\|_{q},∥ italic_x italic_y ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ italic_x ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∥ italic_y ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ,

for xLr(),yLq(),0p,q,r,,1q+1r=1px\in L_{r}(\mathcal{M}),y\in L_{q}(\mathcal{M}),0\leq p,q,r,\leq\infty,\frac{1%}{q}+\frac{1}{r}=\frac{1}{p}italic_x ∈ italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( caligraphic_M ) , italic_y ∈ italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) , 0 ≤ italic_p , italic_q , italic_r , ≤ ∞ , divide start_ARG 1 end_ARG start_ARG italic_q end_ARG + divide start_ARG 1 end_ARG start_ARG italic_r end_ARG = divide start_ARG 1 end_ARG start_ARG italic_p end_ARG. The interpolation properties of Lp(Ω,μ)subscript𝐿𝑝Ω𝜇L_{p}(\Omega,\mu)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) extend to Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) as well, and the duality properties of Lp(Ω,μ)subscript𝐿𝑝Ω𝜇L_{p}(\Omega,\mu)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω , italic_μ ) extend to Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) for the range p1𝑝1p\geq 1italic_p ≥ 1. The elements in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) may not belong to \mathcal{M}caligraphic_M or B(H)𝐵𝐻B(H)italic_B ( italic_H ) in general. They can be understood as unbounded operators affiliated with \mathcal{M}caligraphic_M.For self-adjoint elements x,y𝑥𝑦x,yitalic_x , italic_y in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), we say x𝑥xitalic_x is positive, denoted by x0𝑥0x\geq 0italic_x ≥ 0 if (2.1) holds (the quantity may be \infty though). We write xy𝑥𝑦x\leq yitalic_x ≤ italic_y if yx0𝑦𝑥0y-x\geq 0italic_y - italic_x ≥ 0.

Define (Lp())subscriptsubscript𝐿𝑝\ell_{\infty}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) such that

(2.2)x(Lp())=supnxnp<.subscriptnorm𝑥subscriptsubscript𝐿𝑝subscriptsupremum𝑛subscriptnormsubscript𝑥𝑛𝑝\displaystyle\|x\|_{\ell_{\infty}(L_{p}(\mathcal{M}))}=\sup_{n}\|x_{n}\|_{p}<\infty.∥ italic_x ∥ start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT = roman_sup start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT < ∞ .

Define 1(Lp())subscript1subscript𝐿𝑝\ell_{1}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) such that

(2.3)x1(Lp())=nxnp<.subscriptnorm𝑥subscript1subscript𝐿𝑝subscript𝑛subscriptnormsubscript𝑥𝑛𝑝\displaystyle\|x\|_{\ell_{1}(L_{p}(\mathcal{M}))}=\sum_{n}\|x_{n}\|_{p}<\infty.∥ italic_x ∥ start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT < ∞ .

We have the duality that

(Lq())=(1(Lp()))subscriptsubscript𝐿𝑞superscriptsubscript1subscript𝐿𝑝\displaystyle\ell_{\infty}(L_{q}(\mathcal{M}))=(\ell_{1}(L_{p}(\mathcal{M})))^%{*}roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ) = ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT

for 1p<,1p+1q=1formulae-sequence1𝑝1𝑝1𝑞11\leq p<\infty,\frac{1}{p}+\frac{1}{q}=11 ≤ italic_p < ∞ , divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_q end_ARG = 1, via the isometric isomorphism

xφx;φx(y)=nτ(xnyn).formulae-sequencemaps-to𝑥subscript𝜑𝑥subscript𝜑𝑥𝑦subscript𝑛𝜏subscript𝑥𝑛subscript𝑦𝑛x\mapsto\varphi_{x};\varphi_{x}(y)=\sum_{n}\tau(x_{n}y_{n}).italic_x ↦ italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ; italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_y ) = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) .

On the other hand, 1(Lq())subscript1subscript𝐿𝑞\ell_{1}(L_{q}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ) isometrically embeds into the dual of (Lp())subscriptsubscript𝐿𝑝\ell_{\infty}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) as a weak *-dense subspace via the same isomorphism for the same range and relation of p,q𝑝𝑞p,qitalic_p , italic_q. We refer to the survey paper [11] for more information on noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces.

2.2. Pisier’s Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) norm

Given two positive operators x,yLp()𝑥𝑦subscript𝐿𝑝x,y\in L_{p}(\mathcal{M})italic_x , italic_y ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) e.g. x,ySp𝑥𝑦subscript𝑆𝑝x,y\in S_{p}italic_x , italic_y ∈ italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, the expression sup(x,y)supremum𝑥𝑦\sup(x,y)roman_sup ( italic_x , italic_y ) does not make sense unless x,y𝑥𝑦x,yitalic_x , italic_y commutes so that the least upper element exists.Nevertheless, the following is a reasonable expression for supnxnLp()subscriptnormsubscriptsupremum𝑛subscript𝑥𝑛subscript𝐿𝑝\|\sup_{n}x_{n}\|_{L_{p}(\mathcal{M})}∥ roman_sup start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) end_POSTSUBSCRIPT for sequences of positive elements xnsubscript𝑥𝑛x_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ),

(2.4)|(xn)Lp(;+)=inf{aLp;xna,aLp()}.\displaystyle\||(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty}^{+})}=\inf\{\|a\|_{%L_{p}};x_{n}\leq a,a\in L_{p}(\mathcal{M})\}.∥ | ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT = roman_inf { ∥ italic_a ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT ; italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≤ italic_a , italic_a ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) } .

For sequences of positive elements ynsubscript𝑦𝑛y_{n}italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT in Lp(),1p<subscript𝐿𝑝1𝑝L_{p}(\mathcal{M}),1\leq p<\inftyitalic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) , 1 ≤ italic_p < ∞ such that n=1Nynsuperscriptsubscript𝑛1𝑁subscript𝑦𝑛\sum_{n=1}^{N}y_{n}∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT converges in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), let

(2.5)(yn)Lp(;1+)=n=1ynLp().subscriptnormsubscript𝑦𝑛subscript𝐿𝑝superscriptsubscript1subscriptnormsuperscriptsubscript𝑛1subscript𝑦𝑛subscript𝐿𝑝\displaystyle\|(y_{n})\|_{L_{p}(\mathcal{M};\ell_{1}^{+})}=\left\|\sum_{n=1}^{%\infty}y_{n}\right\|_{L_{p}(\mathcal{M})}.∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT = ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) end_POSTSUBSCRIPT .

Here the right hand side is an increasing sequence. G. Pisier ([9] and M. Junge ([5] proved that the expressions (2.4) and (2.5) extend to Banach space norms.111The obvious extension n|xn|psubscriptnormsubscript𝑛subscript𝑥𝑛𝑝\|\sum_{n}|x_{n}|\|_{p}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for sequences xnLp()subscript𝑥𝑛subscript𝐿𝑝x_{n}\in L_{p}(\mathcal{M})italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) fails the triangle inequality. Furthermore, they proved a duality result for these two norms (see Lemma 2.2), which is the key for Junge’s proof of the noncommutative Doob’s maximal inequality.

Define Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) which admits a factorization

(2.6)xn=aznb,n1,formulae-sequencesubscript𝑥𝑛𝑎subscript𝑧𝑛𝑏for-all𝑛1x_{n}=az_{n}b,\quad\forall n\geq 1,italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b , ∀ italic_n ≥ 1 ,

where a,bL2p()𝑎𝑏subscript𝐿2𝑝a,b\in L_{2p}(\mathcal{M})italic_a , italic_b ∈ italic_L start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ( caligraphic_M ) and z=(zn)𝑧subscript𝑧𝑛z=(z_{n})italic_z = ( italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) belongs to the unit ball of \mathcal{M}caligraphic_M.Given xLp(;)𝑥subscript𝐿𝑝subscriptx\in L_{p}(\mathcal{M};\ell_{\infty})italic_x ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ), define

(2.7)xLp(;)=inf{a2psupn1znb2p},subscriptnorm𝑥subscript𝐿𝑝subscriptinfimumsubscriptnorm𝑎2𝑝subscriptsupremum𝑛1subscriptnormsubscript𝑧𝑛subscriptnorm𝑏2𝑝\displaystyle\|x\|_{L_{p}(\mathcal{M};\ell_{\infty})}=\inf\left\{\|a\|_{2p}%\sup_{n\geq 1}\|z_{n}\|_{\infty}\|b\|_{2p}\right\},∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = roman_inf { ∥ italic_a ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT ∥ italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ∥ italic_b ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT } ,

where the infimum is taken over all factorizations of x𝑥xitalic_x as in (2.6). We denote the subset of Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) consisting of all positive sequences by Lp(;+)subscript𝐿𝑝subscriptsuperscriptL_{p}(\mathcal{M};\ell^{+}_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ). Next, we denote the subspace of Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) consisting of all sequences x=(xn)n𝑥subscriptsubscript𝑥𝑛𝑛x=(x_{n})_{n}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that xn=0subscript𝑥𝑛0x_{n}=0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 for n>N𝑛𝑁n>Nitalic_n > italic_N by Lp(;N)subscript𝐿𝑝subscriptsuperscript𝑁L_{p}(\mathcal{M};\ell^{N}_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ).

Define Lp(1)subscript𝐿𝑝subscript1L_{p}(\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) as the space of all sequences x=(xn)n1𝑥subscriptsubscript𝑥𝑛𝑛1x=(x_{n})_{n\geq 1}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) which admits a factorization

(2.8)xn=anbn,for alln1,formulae-sequencesubscript𝑥𝑛subscript𝑎𝑛subscript𝑏𝑛for all𝑛1x_{n}=a_{n}b_{n},\quad\text{ for all }n\geq 1,italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , for all italic_n ≥ 1 ,

such that the series nanansubscript𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛\sum_{n}a_{n}a_{n}^{*}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and nbnbnsubscript𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛\sum_{n}b_{n}^{*}b_{n}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT converges in Lp().subscript𝐿𝑝L_{p}(\mathcal{M}).italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) . Given xLp(;1)𝑥subscript𝐿𝑝subscript1x\in L_{p}(\mathcal{M};\ell_{1})italic_x ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), define

(2.9)xLp(;1)=inf{(ajaj)122p(bjbj)122p},subscriptnorm𝑥subscript𝐿𝑝subscript1infimumsubscriptnormsuperscriptsubscript𝑎𝑗superscriptsubscript𝑎𝑗122𝑝subscriptnormsuperscriptsuperscriptsubscript𝑏𝑗subscript𝑏𝑗122𝑝\|x\|_{L_{p}(\mathcal{M};\ell_{1})}=\inf\left\{\left\|\left(\sum a_{j}a_{j}^{*%}\right)^{\frac{1}{2}}\right\|_{2p}\cdot\left\|\left(\sum b_{j}^{*}b_{j}\right%)^{\frac{1}{2}}\right\|_{2p}\right\},∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = roman_inf { ∥ ( ∑ italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ⋅ ∥ ( ∑ italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT } ,

where the infimum is taken over all possible factorizations (2.8).222There are slightly different definition of the space Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) in the literature. Here, we use the definition given in [10]. We denote the subset of Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) consisting of all positive sequences by Lp(;1+)subscript𝐿𝑝subscriptsuperscript1L_{p}(\mathcal{M};\ell^{+}_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).Define Lp(1N)subscript𝐿𝑝superscriptsubscript1𝑁L_{p}(\ell_{1}^{N})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) to be the space of all sequences x=(xn)n1Lp(1)𝑥subscriptsubscript𝑥𝑛𝑛1subscript𝐿𝑝subscript1x=(x_{n})_{n\geq 1}\in L_{p}(\ell_{1})italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) with xn=0subscript𝑥𝑛0x_{n}=0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 for n>N𝑛𝑁n>Nitalic_n > italic_N.G. Pisier ([9]) proved that (2.7) and (2.9) are norms extending (2.4) and (2.5).

Lemma 2.1 (Pisier [9]).

For sequences xn0Lp()subscript𝑥𝑛0subscript𝐿𝑝x_{n}\geq 0\in L_{p}(\mathcal{M})italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), we have

(2.10)(xn)Lp(;1)=(xn)Lp(;1+)subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript1subscriptnormsubscript𝑥𝑛subscript𝐿𝑝superscriptsubscript1\displaystyle\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{1})}=\|(x_{n})\|_{L_{p}(%\mathcal{M};\ell_{1}^{+})}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT

in the sense that both sides are equally finite or both sides are infinite, and

(2.11)(xn)Lp(;)(xn)Lp(;+)4(xn)Lp(;)subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscriptsubscriptnormsubscript𝑥𝑛subscript𝐿𝑝superscriptsubscript4subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript\displaystyle\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}\leq\|(x_{n})\|_{L_%{p}(\mathcal{M};\ell_{\infty}^{+})}\leq 4\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{%\infty})}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 4 ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT
Proof.

We prove (2.10) first. The left hand side is obviously smaller because we may choosean=bn=(xn)12subscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑥𝑛12a_{n}=b_{n}=(x_{n})^{\frac{1}{2}}italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT for xn0subscript𝑥𝑛0x_{n}\geq 0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0. To prove that the right hand side is smaller, we assume (xn)Lp(;1)=1subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript11\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{1})}=1∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = 1 and assume that there exists a factorization that xn=anbnsubscript𝑥𝑛subscript𝑎𝑛subscript𝑏𝑛x_{n}=a_{n}b_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that

nananp,nbnbnp1+ε.subscriptnormsubscript𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛𝑝subscriptnormsubscript𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛𝑝1𝜀\|\sum_{n}a_{n}a_{n}^{*}\|_{p},\|\sum_{n}b_{n}b_{n}^{*}\|_{p}\leq 1+\varepsilon.∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ 1 + italic_ε .

Then, 2xn=anbn+bnananan+bnbn2subscript𝑥𝑛subscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛2x_{n}=a_{n}b_{n}+b_{n}^{*}a_{n}^{*}\leq a_{n}a_{n}^{*}+b_{n}^{*}b_{n}2 italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≤ italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT because(anbn)(anbn)0superscriptsuperscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛0(a_{n}^{*}-b_{n})^{*}(a_{n}^{*}-b_{n})\geq 0( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≥ 0. So, n=1Nxnsuperscriptsubscript𝑛1𝑁subscript𝑥𝑛\sum_{n=1}^{N}x_{n}∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT converges in Lp()subscript𝐿𝑝L_{p}({\mathcal{M}})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) because nNanansuperscriptsubscript𝑛𝑁subscript𝑎𝑛superscriptsubscript𝑎𝑛\sum_{n}^{N}a_{n}a_{n}^{*}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and nNbnbnsuperscriptsubscript𝑛𝑁superscriptsubscript𝑏𝑛subscript𝑏𝑛\sum_{n}^{N}b_{n}^{*}b_{n}∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT do. Moreover,

2n=1Nxnpn=1Nanan+bnbnp2+2ε.2subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑥𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑎𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛𝑝22𝜀2\|\sum_{n=1}^{N}x_{n}\|_{p}\leq\|\sum_{n=1}^{N}a_{n}a_{n}^{*}+b_{n}b_{n}^{*}%\|_{p}\leq 2+2\varepsilon.2 ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ 2 + 2 italic_ε .

We conclude by taking N,ε0.formulae-sequence𝑁𝜀0N\rightarrow\infty,\varepsilon\rightarrow 0.italic_N → ∞ , italic_ε → 0 .

For (2.11), assuming xnaLp()subscript𝑥𝑛𝑎subscript𝐿𝑝x_{n}\leq a\in L_{p}(\mathcal{M})italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≤ italic_a ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), we denote by p𝑝pitalic_p the projection onto the kernel of a𝑎aitalic_a. Then, p𝑝p\in\mathcal{M}italic_p ∈ caligraphic_M. Let zn=(p+a12)1xn(p+a12)1subscript𝑧𝑛superscript𝑝superscript𝑎121subscript𝑥𝑛superscript𝑝superscript𝑎121z_{n}=(p+a^{\frac{1}{2}})^{-1}x_{n}(p+a^{\frac{1}{2}})^{-1}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( italic_p + italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_p + italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Then, znsubscript𝑧𝑛z_{n}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT belongs to the unit ball of \mathcal{M}caligraphic_M and xn=a12zna12subscript𝑥𝑛superscript𝑎12subscript𝑧𝑛superscript𝑎12x_{n}=a^{\frac{1}{2}}z_{n}a^{\frac{1}{2}}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT.We see that the first inequality holds. Next, we show the second inequality. We assume that (xn)Lp(;)=1subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript1\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}=1∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = 1 and xnsubscript𝑥𝑛x_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT has a factorization xn=aznbsubscript𝑥𝑛𝑎subscript𝑧𝑛𝑏x_{n}=az_{n}bitalic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_a italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_b with zn=1normsubscript𝑧𝑛1\|z_{n}\|=1∥ italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ = 1 and a2p,b2p1+εsubscriptnorm𝑎2𝑝subscriptnorm𝑏2𝑝1𝜀\|a\|_{2p},\|b\|_{2p}\leq 1+\varepsilon∥ italic_a ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT , ∥ italic_b ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ≤ 1 + italic_ε.We write zn=k=03ikzn,ksubscript𝑧𝑛superscriptsubscript𝑘03superscript𝑖𝑘subscript𝑧𝑛𝑘z_{n}=\sum_{k=0}^{3}i^{k}z_{n,k}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_i start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT with contractions zn,k0subscript𝑧𝑛𝑘0z_{n,k}\geq 0italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT ≥ 0, and consider the new decomposition xn=kakzn,kbsubscript𝑥𝑛subscript𝑘subscript𝑎𝑘subscript𝑧𝑛𝑘𝑏x_{n}=\sum_{k}a_{k}z_{n,k}bitalic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_b with ak=ikasubscript𝑎𝑘superscript𝑖𝑘𝑎a_{k}=i^{k}aitalic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_i start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_a. Noting that (akb)zn,k(akb)0superscriptsuperscriptsubscript𝑎𝑘𝑏subscript𝑧𝑛𝑘superscriptsubscript𝑎𝑘𝑏0(a_{k}^{*}-b)^{*}z_{n,k}(a_{k}^{*}-b)\geq 0( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT - italic_b ) ≥ 0, we have

xn=12k=03(akzn,kb+bzn,kak)12k=13(akznkak+bzn,kb)2(aa+bb),subscript𝑥𝑛12superscriptsubscript𝑘03subscript𝑎𝑘subscript𝑧𝑛𝑘𝑏superscript𝑏subscript𝑧𝑛𝑘superscriptsubscript𝑎𝑘12superscriptsubscript𝑘13superscriptsubscript𝑎𝑘subscript𝑧subscript𝑛𝑘subscript𝑎𝑘𝑏subscript𝑧𝑛𝑘superscript𝑏2superscript𝑎𝑎𝑏superscript𝑏x_{n}=\frac{1}{2}\sum_{k=0}^{3}(a_{k}z_{n,k}b+b^{*}z_{n,k}a_{k}^{*})\leq\frac{%1}{2}\sum_{k=1}^{3}(a_{k}^{*}z_{n_{k}}a_{k}+bz_{n,k}b^{*})\leq 2(a^{*}a+bb^{*}),italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_b + italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_b italic_z start_POSTSUBSCRIPT italic_n , italic_k end_POSTSUBSCRIPT italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≤ 2 ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a + italic_b italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ,

with 2(aa+bb)p(2+2ε)2.subscriptnorm2superscript𝑎𝑎𝑏superscript𝑏𝑝superscript22𝜀2\|2(a^{*}a+bb^{*})\|_{p}\leq(2+2\varepsilon)^{2}.∥ 2 ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a + italic_b italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ( 2 + 2 italic_ε ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .Taking ε0𝜀0\varepsilon\rightarrow 0italic_ε → 0, we conclude (2.11).∎

The following lemma is another key to understanding the proof of the operator Hardy-Littlewood maximal inequality.The result was proved by G. Pisier ([9, 5]). We include an argument for the case of finite sequences below.

Lemma 2.2 ([9, 5]).

The norms (2.4) and (2.5) are in duality. More precisely, for 1p<,1p+1q=1formulae-sequence1𝑝1𝑝1𝑞11\leq p<\infty,\frac{1}{p}+\frac{1}{q}=11 ≤ italic_p < ∞ , divide start_ARG 1 end_ARG start_ARG italic_p end_ARG + divide start_ARG 1 end_ARG start_ARG italic_q end_ARG = 1,

  • (i)

    For any N𝑁Nitalic_N-tuple (y1,,yN)subscript𝑦1subscript𝑦𝑁(y_{1},\dots,y_{N})( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) in Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) and yk0,k=1,,Nformulae-sequencesubscript𝑦𝑘0𝑘1𝑁y_{k}\geq 0,k=1,\dots,Nitalic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≥ 0 , italic_k = 1 , … , italic_N, we have

    (2.12)(yn)Lp(;1N)=sup{|τ(j=1Nxjyj)|:(xj)Lq(;+)1}.\|(y_{n})\|_{L_{p}(\mathcal{M};\ell_{1}^{N})}=\sup\left\{|\tau\left(\sum_{j=1}%^{N}x_{j}y_{j}\right)|:\|(x_{j})\|_{L_{q}(\mathcal{M};\ell_{\infty}^{+})}\leq 1%\right\}.∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT = roman_sup { | italic_τ ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) | : ∥ ( italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } .
  • (ii)

    For any bounded sequence (xn)subscript𝑥𝑛(x_{n})( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) in Lq()subscript𝐿𝑞L_{q}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) with xn0subscript𝑥𝑛0x_{n}\geq 0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, we have

    (2.13)(xn)Lq(;)=supN{|τ(j=1Nxjyj)|:yj0,(yj)Lp(;1N)1}.\|(x_{n})\|_{L_{q}(\mathcal{M};\ell_{\infty})}=\sup_{N}\left\{|\tau\left(\sum_%{j=1}^{N}x_{j}y_{j}\right)|:y_{j}\geq 0,\|(y_{j})\|_{L_{p}(\mathcal{M};\ell_{1%}^{N})}\leq 1\right\}.∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = roman_sup start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT { | italic_τ ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) | : italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 0 , ∥ ( italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } .
  • (iii)

    Lq(;+)subscript𝐿𝑞superscriptsubscriptL_{q}(\mathcal{M};\ell_{\infty}^{+})italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) embeds isometrically into the dual space of Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) for 1p<1𝑝1\leq p<\infty1 ≤ italic_p < ∞ via the isomorphism

    xφx:φx(y)=nxnyn.:maps-to𝑥subscript𝜑𝑥subscript𝜑𝑥𝑦subscript𝑛subscript𝑥𝑛subscript𝑦𝑛x\mapsto\varphi_{x}:\varphi_{x}(y)=\sum_{n}x_{n}y_{n}.italic_x ↦ italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT : italic_φ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_y ) = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .

    For any φ𝜑\varphiitalic_φ in Lp(;1)subscript𝐿𝑝superscriptsubscript1L_{p}(\mathcal{M};\ell_{1})^{*}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT such that φ((yn))0𝜑subscript𝑦𝑛0\varphi((y_{n}))\geq 0italic_φ ( ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) ≥ 0 for finite positive sequences (yn)Lp()subscript𝑦𝑛subscript𝐿𝑝(y_{n})\in L_{p}(\mathcal{M})( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ), there is a (unique) positive sequence (xn)subscript𝑥𝑛(x_{n})( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) in Lq()subscript𝐿𝑞L_{q}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) with

    xLq(;)=φ(Lp(;1))subscriptnorm𝑥subscript𝐿𝑞subscriptsubscriptnorm𝜑superscriptsubscript𝐿𝑝subscript1\|x\|_{L_{q}(\mathcal{M};\ell_{\infty})}=\|\varphi\|_{(L_{p}(\mathcal{M};\ell_%{1}))^{*}}∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = ∥ italic_φ ∥ start_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT

    such that for any N1𝑁1N\geq 1italic_N ≥ 1 and any y=(y1,,yN)Lp(;1N)𝑦subscript𝑦1subscript𝑦𝑁subscript𝐿𝑝superscriptsubscript1𝑁y=(y_{1},\dots,y_{N})\in L_{p}(\mathcal{M};\ell_{1}^{N})italic_y = ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ),

    φ(y)=τ(j=1Nxjyj).𝜑𝑦𝜏superscriptsubscript𝑗1𝑁subscript𝑥𝑗subscript𝑦𝑗\varphi(y)=\tau\left(\sum_{j=1}^{N}x_{j}y_{j}\right).italic_φ ( italic_y ) = italic_τ ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) .
Proof.

(i). Let x=(xn)Lq(;),y=(yn)Lp(;1)formulae-sequence𝑥subscript𝑥𝑛subscript𝐿𝑞subscript𝑦subscript𝑦𝑛subscript𝐿𝑝subscript1x=(x_{n})\in L_{q}(\mathcal{M};\ell_{\infty}),y=(y_{n})\in L_{p}(\mathcal{M};%\ell_{1})italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) , italic_y = ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). First, we prove that

(2.14)|τ(xjyj)|(xj)Lq(;)yLp(;1N).𝜏subscript𝑥𝑗subscript𝑦𝑗subscriptnormsubscript𝑥𝑗subscript𝐿𝑞subscriptsubscriptnorm𝑦subscript𝐿𝑝superscriptsubscript1𝑁\left|\sum\tau(x_{j}y_{j})\right|\leq\|(x_{j})\|_{L_{q}(\mathcal{M};\ell_{%\infty})}\|y\|_{L_{p}(\mathcal{M};\ell_{1}^{N})}.| ∑ italic_τ ( italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) | ≤ ∥ ( italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ∥ italic_y ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT .

Consider a factorization xj=azjbsubscript𝑥𝑗𝑎subscript𝑧𝑗𝑏x_{j}=az_{j}bitalic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_a italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_b where a,bL2q()𝑎𝑏subscript𝐿2𝑞a,b\in L_{2q}(\mathcal{M})italic_a , italic_b ∈ italic_L start_POSTSUBSCRIPT 2 italic_q end_POSTSUBSCRIPT ( caligraphic_M ) and (zj)subscript𝑧𝑗(z_{j})( italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) belongs to the unit ball of \mathcal{M}caligraphic_M.Also consider a factorization of yj=ujvjsubscript𝑦𝑗subscript𝑢𝑗subscript𝑣𝑗y_{j}=u_{j}v_{j}italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT where uj,vjL2p()subscript𝑢𝑗subscript𝑣𝑗subscript𝐿2𝑝u_{j},v_{j}\in L_{2p}(\mathcal{M})italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT ( caligraphic_M ).Then, by Hölder’s inequality and the Cauchy-Schwarz inequality,

|jτ(azjbujvj)|subscript𝑗𝜏𝑎subscript𝑧𝑗𝑏subscript𝑢𝑗subscript𝑣𝑗\displaystyle\left|\sum_{j}\tau(az_{j}bu_{j}v_{j})\right|| ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_τ ( italic_a italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) |=|jτ(zjbujvja)|jbujvja1absentsubscript𝑗𝜏subscript𝑧𝑗𝑏subscript𝑢𝑗subscript𝑣𝑗𝑎subscript𝑗subscriptnorm𝑏subscript𝑢𝑗subscript𝑣𝑗𝑎1\displaystyle=\left|\sum_{j}\tau(z_{j}bu_{j}v_{j}a)\right|\leq\sum_{j}\|bu_{j}%v_{j}a\|_{1}= | ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_τ ( italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ) | ≤ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT
jbuj2vja2absentsubscript𝑗subscriptnorm𝑏subscript𝑢𝑗2subscriptnormsubscript𝑣𝑗𝑎2\displaystyle\leq\sum_{j}\|bu_{j}\|_{2}\|v_{j}a\|_{2}≤ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT
(jbuj22)12(jvja22)12absentsuperscriptsubscript𝑗superscriptsubscriptnorm𝑏subscript𝑢𝑗2212superscriptsubscript𝑗superscriptsubscriptnormsubscript𝑣𝑗𝑎2212\displaystyle\leq\left(\sum_{j}\|bu_{j}\|_{2}^{2}\right)^{\frac{1}{2}}\left(%\sum_{j}\|v_{j}a\|_{2}^{2}\right)^{\frac{1}{2}}≤ ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_b italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∥ italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT
=(τ(bjujujb))12(τ(ajvjvja))12absentsuperscript𝜏𝑏subscript𝑗subscript𝑢𝑗superscriptsubscript𝑢𝑗superscript𝑏12superscript𝜏superscript𝑎subscript𝑗subscript𝑣𝑗superscriptsubscript𝑣𝑗𝑎12\displaystyle=\left(\tau(b\sum_{j}u_{j}u_{j}^{*}b^{*})\right)^{\frac{1}{2}}%\left(\tau(a^{*}\sum_{j}v_{j}v_{j}^{*}a)\right)^{\frac{1}{2}}= ( italic_τ ( italic_b ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( italic_τ ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a ) ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT
bbq12jujujp12aaq12jvjvjp12absentsubscriptsuperscriptnormsuperscript𝑏𝑏12𝑞subscriptsuperscriptnormsubscript𝑗subscript𝑢𝑗superscriptsubscript𝑢𝑗12𝑝subscriptsuperscriptnorm𝑎superscript𝑎12𝑞subscriptsuperscriptnormsubscript𝑗subscript𝑣𝑗superscriptsubscript𝑣𝑗12𝑝\displaystyle\leq\|b^{*}b\|^{\frac{1}{2}}_{q}\|\sum_{j}u_{j}u_{j}^{*}\|^{\frac%{1}{2}}_{p}\|aa^{*}\|^{\frac{1}{2}}_{q}\|\sum_{j}v_{j}v_{j}^{*}\|^{\frac{1}{2}%}_{p}≤ ∥ italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∥ italic_a italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT
b2q(jujuj)12pa2q(jvjvj)12pabsentsubscriptnorm𝑏2𝑞subscriptnormsuperscriptsubscript𝑗subscript𝑢𝑗superscriptsubscript𝑢𝑗12𝑝subscriptnorm𝑎2𝑞subscriptnormsuperscriptsubscript𝑗subscript𝑣𝑗superscriptsubscript𝑣𝑗12𝑝\displaystyle\leq\|b\|_{2q}\|(\sum_{j}u_{j}u_{j}^{*})^{\frac{1}{2}}\|_{p}\|a\|%_{2q}\|(\sum_{j}v_{j}v_{j}^{*})^{\frac{1}{2}}\|_{p}≤ ∥ italic_b ∥ start_POSTSUBSCRIPT 2 italic_q end_POSTSUBSCRIPT ∥ ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∥ italic_a ∥ start_POSTSUBSCRIPT 2 italic_q end_POSTSUBSCRIPT ∥ ( ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT

Hence, we proved the one side inequality of (i) and (ii) and the first half of (iii).

Now, suppose yn0,y=(yn)nLp(;1N)formulae-sequencesubscript𝑦𝑛0𝑦subscriptsubscript𝑦𝑛𝑛subscript𝐿𝑝superscriptsubscript1𝑁y_{n}\geq 0,y=(y_{n})_{n}\in L_{p}(\mathcal{M};\ell_{1}^{N})italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 , italic_y = ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ).Choose x=(xn)n=1N𝑥superscriptsubscriptsubscript𝑥𝑛𝑛1𝑁x=(x_{n})_{n=1}^{N}italic_x = ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT with xn=(k=1Nyk)p1subscript𝑥𝑛superscriptsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝1x_{n}=(\sum_{k=1}^{N}y_{k})^{p-1}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT for all 1nN1𝑛𝑁1\leq n\leq N1 ≤ italic_n ≤ italic_N. Note

(xn)Lq(;)=(kyk)p1q=k=1Nykpp1subscriptnormsubscript𝑥𝑛subscript𝐿𝑞subscriptsubscriptnormsuperscriptsubscript𝑘subscript𝑦𝑘𝑝1𝑞superscriptsubscriptnormsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝𝑝1\|(x_{n})\|_{L_{q}(\mathcal{M};\ell_{\infty})}=\left\|\left(\sum_{k}y_{k}%\right)^{p-1}\right\|_{q}=\|\sum_{k=1}^{N}~{}y_{k}\|_{p}^{p-1}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = ∥ ( ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = ∥ ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT

Thus,

τ(kykxk)=τ(k=1Nyk(k=1Nyk)p1)=k=1Nykp.𝜏subscript𝑘subscript𝑦𝑘subscript𝑥𝑘𝜏superscriptsubscript𝑘1𝑁subscript𝑦𝑘superscriptsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝1subscriptnormsuperscriptsubscript𝑘1𝑁subscript𝑦𝑘𝑝\tau\left(\sum_{k}y_{k}x_{k}\right)=\tau\left(\sum_{k=1}^{N}~{}y_{k}\left(\sum%_{k=1}^{N}~{}y_{k}\right)^{p-1}\right)=\|\sum_{k=1}^{N}~{}y_{k}\|_{p}.italic_τ ( ∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) = italic_τ ( ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p - 1 end_POSTSUPERSCRIPT ) = ∥ ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT .

Therefore, we proved the other direction of (i).

We now prove the other direction of (ii). By the Hahn-Banach theorem, for any (xn)Lp(;)subscript𝑥𝑛subscript𝐿𝑝subscript(x_{n})\in L_{p}(\mathcal{M};\ell_{\infty})( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ), there exists φLp(;)𝜑subscript𝐿𝑝superscriptsubscript\varphi\in L_{p}(\mathcal{M};\ell_{\infty})^{*}italic_φ ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, such that φ=1norm𝜑1\|\varphi\|=1∥ italic_φ ∥ = 1 and φ((xn))=(xn)Lp(;)𝜑subscript𝑥𝑛subscriptnormsubscript𝑥𝑛subscript𝐿𝑝subscript\varphi((x_{n}))=\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}italic_φ ( ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT.Since Lp(;)subscript𝐿𝑝subscriptL_{p}(\mathcal{M};\ell_{\infty})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) is a subspace of (Lp())subscriptsubscript𝐿𝑝\ell_{\infty}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ), there exists φ~((Lp()))~𝜑superscriptsubscriptsubscript𝐿𝑝\tilde{\varphi}\in(\ell_{\infty}(L_{p}(\mathcal{M})))^{*}over~ start_ARG italic_φ end_ARG ∈ ( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT such thatφ(x)=φ~(x)𝜑𝑥~𝜑𝑥\varphi(x)=\tilde{\varphi}(x)italic_φ ( italic_x ) = over~ start_ARG italic_φ end_ARG ( italic_x ). Since the unit ball of 1N(Lp())superscriptsubscript1𝑁subscript𝐿𝑝\ell_{1}^{N}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) is weak *-dense in the unit ball of ((Lp()))superscriptsubscriptsubscript𝐿𝑝(\ell_{\infty}(L_{p}(\mathcal{M})))^{*}( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and xn0subscript𝑥𝑛0x_{n}\geq 0italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, we conclude that for any ε>0𝜀0\varepsilon>0italic_ε > 0, there exists a φε((Lp()))subscript𝜑𝜀superscriptsubscriptsubscript𝐿𝑝\varphi_{\varepsilon}\in(\ell_{\infty}(L_{p}(\mathcal{M})))^{*}italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ∈ ( roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT in the form

φε((xn))=n=1τ(xnyn),subscript𝜑𝜀subscript𝑥𝑛subscript𝑛1𝜏subscript𝑥𝑛subscript𝑦𝑛\varphi_{\varepsilon}((x_{n}))=\sum_{n=1}\tau(x_{n}y_{n}),italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ,

such that φ(x)=φ~(x)φε(x)+ε𝜑𝑥~𝜑𝑥subscript𝜑𝜀𝑥𝜀\varphi(x)=\tilde{\varphi}(x)\leq\varphi_{\varepsilon}(x)+\varepsilonitalic_φ ( italic_x ) = over~ start_ARG italic_φ end_ARG ( italic_x ) ≤ italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_x ) + italic_ε and (yn)n1N(Lp())subscriptsubscript𝑦𝑛𝑛superscriptsubscript1𝑁subscript𝐿𝑝(y_{n})_{n}\in\ell_{1}^{N}(L_{p}(\mathcal{M}))( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) with yn0subscript𝑦𝑛0y_{n}\geq 0italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0. On the other hand, we know from (i) that,

(yn)Lp(;1)subscriptnormsubscript𝑦𝑛subscript𝐿𝑝subscript1\displaystyle\|(y_{n})\|_{L_{p}(\mathcal{M};\ell_{1})}∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT=\displaystyle==supxLp(;)1|τ(xnyn)|subscriptsupremumsubscriptnorm𝑥subscript𝐿𝑝subscript1𝜏subscript𝑥𝑛subscript𝑦𝑛\displaystyle\sup_{\|x\|_{L_{p}(\mathcal{M};\ell_{\infty})}\leq 1}|\tau(x_{n}y%_{n})|roman_sup start_POSTSUBSCRIPT ∥ italic_x ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 end_POSTSUBSCRIPT | italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) |
\displaystyle\leqsupx(Lp)1|τ(xnyn)|subscriptsupremumsubscriptnorm𝑥subscriptsubscript𝐿𝑝1𝜏subscript𝑥𝑛subscript𝑦𝑛\displaystyle\sup_{\|x\|_{\ell_{\infty}(L_{p})}\leq 1}|\tau(x_{n}y_{n})|roman_sup start_POSTSUBSCRIPT ∥ italic_x ∥ start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 end_POSTSUBSCRIPT | italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) |
\displaystyle\leqφε=1.normsubscript𝜑𝜀1\displaystyle\|\varphi_{\varepsilon}\|=1.∥ italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ∥ = 1 .

We obtain

(2.15)(xn)Lp(;)=φ(x)φε(x)+εsup{|τ(xnyn)|:yj0,(yn)Lp(;1N)1}+ε.\|(x_{n})\|_{L_{p}(\mathcal{M};\ell_{\infty})}=\varphi(x)\leq\varphi_{%\varepsilon}(x)+\varepsilon\leq\sup\left\{|\tau\left(\sum x_{n}y_{n}\right)|:y%_{j}\geq 0,\|(y_{n})\|_{L_{p^{{}^{\prime}}}(\mathcal{M};\ell_{1}^{N})}\leq 1%\right\}+\varepsilon.∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT = italic_φ ( italic_x ) ≤ italic_φ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_x ) + italic_ε ≤ roman_sup { | italic_τ ( ∑ italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) | : italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 0 , ∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } + italic_ε .

We then conclude (ii) by letting ε0𝜀0\varepsilon\rightarrow 0italic_ε → 0.

We now prove the other direction of (iii).Note that 1(Lp())subscript1subscript𝐿𝑝\ell_{1}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) is a sub-linear vector space of Lp(;1)subscript𝐿𝑝subscript1L_{p}(\mathcal{M};\ell_{1})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) equipped with a larger norm. So, for any bounded linear functional φ(Lp(;1))𝜑superscriptsubscript𝐿𝑝subscript1\varphi\in(L_{p}(\mathcal{M};\ell_{1}))^{*}italic_φ ∈ ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, its restriction on 1(Lp())subscript1subscript𝐿𝑝\ell_{1}(L_{p}(\mathcal{M}))roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) defines a bounded linear functional φ~(1(Lp()))=(Lq())~𝜑superscriptsubscript1subscript𝐿𝑝subscriptsubscript𝐿𝑞\tilde{\varphi}\in(\ell_{1}(L_{p}(\mathcal{M})))^{*}=\ell_{\infty}(L_{q}(%\mathcal{M}))over~ start_ARG italic_φ end_ARG ∈ ( roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ). We conclude that there exists xn0,(xn)(Lq())formulae-sequencesubscript𝑥𝑛0subscript𝑥𝑛subscriptsubscript𝐿𝑞x_{n}\geq 0,(x_{n})\in\ell_{\infty}(L_{q}(\mathcal{M}))italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 , ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ) ) such that

(2.16)φ((yn))=n=1τ(xnyn),𝜑subscript𝑦𝑛superscriptsubscript𝑛1𝜏subscript𝑥𝑛subscript𝑦𝑛\displaystyle\varphi((y_{n}))=\sum_{n=1}^{\infty}\tau(x_{n}y_{n}),italic_φ ( ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) = ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_τ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ,

for all (yn)1(Lp())Lp(;1)subscript𝑦𝑛subscript1subscript𝐿𝑝subscript𝐿𝑝subscript1(y_{n})\in\ell_{1}(L_{p}(\mathcal{M}))\subset L_{p}(\mathcal{M};\ell_{1})( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) ⊂ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). In particular, the expression (2.16) holds for any finite sequences (yn)Lp(;1)subscript𝑦𝑛subscript𝐿𝑝subscript1(y_{n})\in L_{p}(\mathcal{M};\ell_{1})( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). By (ii), we have

(xn)Lq(;)subscriptnormsubscript𝑥𝑛subscript𝐿𝑞subscript\displaystyle\|(x_{n})\|_{L_{q}(\mathcal{M};\ell_{\infty})}∥ ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT=\displaystyle==sup{τ(n=1xnyn);finitesequences(yn),ynLp(;1)1}supremum𝜏subscript𝑛1subscript𝑥𝑛subscript𝑦𝑛finitesequencessubscript𝑦𝑛subscriptnormsubscript𝑦𝑛subscript𝐿𝑝subscript11\displaystyle\sup\left\{\tau\left(\sum_{n=1}x_{n}y_{n}\right);{\rm finite\ %sequences}(y_{n}),\|y_{n}\|_{L_{p}(\mathcal{M};\ell_{1})}\leq 1\right\}roman_sup { italic_τ ( ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ; roman_finite roman_sequences ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , ∥ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 }
=\displaystyle==sup{φ((yn));finitesequences(yn),ynLp(;1)1}φ(Lp(;1)).supremum𝜑subscript𝑦𝑛finitesequencessubscript𝑦𝑛subscriptnormsubscript𝑦𝑛subscript𝐿𝑝subscript11subscriptnorm𝜑superscriptsubscript𝐿𝑝subscript1\displaystyle\sup\left\{\varphi((y_{n}));{\rm finite\ sequences}\ (y_{n}),\|y_%{n}\|_{L_{p}(\mathcal{M};\ell_{1})}\leq 1\right\}\leq\|\varphi\|_{(L_{p}(%\mathcal{M};\ell_{1}))^{*}}.roman_sup { italic_φ ( ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) ; roman_finite roman_sequences ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , ∥ italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 1 } ≤ ∥ italic_φ ∥ start_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .

3. Operator-Maximal Inequality

Let \mathcal{M}caligraphic_M be a semifinite von Neumann algebra, e.g. L(Ω)subscript𝐿ΩL_{\infty}(\Omega)italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( roman_Ω ) or B(H)𝐵𝐻B(H)italic_B ( italic_H ). Let Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) be the associated noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces, e.g. Lp(Ω)subscript𝐿𝑝ΩL_{p}(\Omega)italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( roman_Ω ) or the Schatten classes Spsubscript𝑆𝑝S_{p}italic_S start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT.Let Lp(,),1p<subscript𝐿𝑝1𝑝L_{p}(\mathbb{R},\mathcal{M}),1\leq p<\inftyitalic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , caligraphic_M ) , 1 ≤ italic_p < ∞ be the space of all Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M )-valued Bochner-measurable functions f𝑓fitalic_f on the real line such that

fLp(,Lp())=(f(x)pp𝑑x)1p=(τ[|f(x)|p]𝑑x)1p<.subscriptnorm𝑓superscript𝐿𝑝subscript𝐿𝑝superscriptsubscriptsuperscriptsubscriptnorm𝑓𝑥𝑝𝑝differential-d𝑥1𝑝superscriptsubscript𝜏delimited-[]superscript𝑓𝑥𝑝differential-d𝑥1𝑝\|f\|_{L^{p}(\mathbb{R},L_{p}(\mathcal{M}))}=\left(\int_{\mathbb{R}}\|f(x)\|_{%p}^{p}dx\right)^{\frac{1}{p}}=\left(\int_{\mathbb{R}}\tau\left[|f(x)|^{p}%\right]dx\right)^{\frac{1}{p}}<\infty.∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT = ( ∫ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ∥ italic_f ( italic_x ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_d italic_x ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT = ( ∫ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT italic_τ [ | italic_f ( italic_x ) | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ] italic_d italic_x ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT < ∞ .

We prove the following operator Hardy-Littlewood maximal inequality for fLp(,Lp())𝑓subscript𝐿𝑝subscript𝐿𝑝f\in L_{p}(\mathbb{R},L_{p}(\mathcal{M}))italic_f ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) where 2p<2𝑝2\leq p<\infty2 ≤ italic_p < ∞. The corresponding result for p=𝑝p=\inftyitalic_p = ∞ is trivial.

Theorem 3.1.

Given fLp(,Lp())𝑓subscript𝐿𝑝subscript𝐿𝑝f\in L_{p}(\mathbb{R},L_{p}(\mathcal{M}))italic_f ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) for some 2p<2𝑝2\leq p<\infty2 ≤ italic_p < ∞, there exists a Lp()subscript𝐿𝑝L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M )-valued Bochner-measurable function F𝐹Fitalic_F such that

(i) 12txtx+t|f(y)|𝑑yF(x)12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦𝐹𝑥\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\leq F(x)divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ≤ italic_F ( italic_x ) as operators for all t>0𝑡0t>0italic_t > 0, i.e. F12txtx+t|f(y)|𝑑y0𝐹12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦0F-\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\geq 0italic_F - divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ≥ 0 almost everywhere.

(ii) There exists an absolute constant c𝑐citalic_c such that

(3.1)FLp(,Lp())cfLp(,Lp()).subscriptnorm𝐹superscript𝐿𝑝subscript𝐿𝑝𝑐subscriptnorm𝑓superscript𝐿𝑝subscript𝐿𝑝\displaystyle\|F\|_{L^{p}(\mathbb{R},L_{p}(\mathcal{M}))}\leq c\|f\|_{L^{p}(%\mathbb{R},L_{p}(\mathcal{M}))}.∥ italic_F ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT ≤ italic_c ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( blackboard_R , italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) ) end_POSTSUBSCRIPT .

In order to prove main theorem, we prove the dual form of Theorem 3.1. Let 𝒩𝒩\mathcal{N}caligraphic_N be the von Neumann algebra tensor product L()tensor-productsubscript𝐿L_{\infty}(\mathbb{R})\otimes\mathcal{M}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( blackboard_R ) ⊗ caligraphic_M equipped with the semifinite trace ν=τ𝜈tensor-product𝜏\nu=\int\otimes\tauitalic_ν = ∫ ⊗ italic_τ. Then, Lp(,)subscript𝐿𝑝L_{p}(\mathbb{R},\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R , caligraphic_M ) coincides with the noncommutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT spaces Lp()subscript𝐿𝑝L_{p}({\mathbb{N}})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ) associated with the pair (,ν)𝜈({\mathbb{N}},\nu)( blackboard_N , italic_ν ) for 1p<1𝑝1\leq p<\infty1 ≤ italic_p < ∞. Let Tn,n>0subscript𝑇𝑛𝑛0T_{n},n>0italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_n > 0 be the averaging operator on Lp()Lp()tensor-productsubscript𝐿𝑝subscript𝐿𝑝L_{p}(\mathbb{R})\otimes L_{p}(\mathcal{M})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_R ) ⊗ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_M ) defined by

(Tnf)(x)=12n+1x2nx+2nf(t)𝑑tsubscript𝑇𝑛𝑓𝑥1superscript2𝑛1superscriptsubscript𝑥superscript2𝑛𝑥superscript2𝑛𝑓𝑡differential-d𝑡\displaystyle(T_{n}f)(x)=\frac{1}{2^{n+1}}\int_{x-2^{n}}^{x+2^{n}}f(t)\,dt( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_f ) ( italic_x ) = divide start_ARG 1 end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_x - 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_f ( italic_t ) italic_d italic_t

It is easy to verify that {Tn}nsubscriptsubscript𝑇𝑛𝑛\{T_{n}\}_{n\in\mathbb{Z}}{ italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT is a family of operators from L2(𝒩)L2(𝒩)subscript𝐿2𝒩subscript𝐿2𝒩L_{2}(\mathcal{N})\to L_{2}(\mathcal{N})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) → italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) satisfying

  • Tn=Tnsubscript𝑇𝑛superscriptsubscript𝑇𝑛T_{n}=T_{n}^{*}italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT;

  • Tng0subscript𝑇𝑛𝑔0T_{n}g\geq 0italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g ≥ 0 if g0𝑔0g\geq 0italic_g ≥ 0;

  • TnTm2Tσ(m)subscript𝑇𝑛subscript𝑇𝑚2subscript𝑇𝜎𝑚T_{n}T_{m}\leq 2T_{\sigma(m)}italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≤ 2 italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT for σ(m)=m+1𝜎𝑚𝑚1\sigma(m)=m+1italic_σ ( italic_m ) = italic_m + 1 and any nm𝑛𝑚n\leq mitalic_n ≤ italic_m.

Lemma 3.2.

For any finite sequence gnL2(𝒩)subscript𝑔𝑛subscript𝐿2𝒩g_{n}\in L_{2}(\mathcal{N})italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) with all gn0subscript𝑔𝑛0g_{n}\geq 0italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, we have

(3.2)(Tngn)L2(𝒩;1)4(gn)L2(𝒩;1).subscriptnormsubscript𝑇𝑛subscript𝑔𝑛subscript𝐿2𝒩subscript14subscriptnormsubscript𝑔𝑛subscript𝐿2𝒩subscript1\|(T_{n}g_{n})\|_{L_{2}(\mathcal{N};\ell_{1})}\leq 4\|(g_{n})\|_{L_{2}(%\mathcal{N};\ell_{1})}.∥ ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 4 ∥ ( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT .
Proof.

Given a positive sequence (gn)nL2()subscriptsubscript𝑔𝑛𝑛subscript𝐿2(g_{n})_{n}\in L_{2}({\mathbb{N}})( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_N ) with only finitely many non-zero terms and a bijection α𝛼\alphaitalic_α on \mathbb{Z}blackboard_Z, we have that for σ(m)=m+1𝜎𝑚𝑚1\sigma(m)=m+1italic_σ ( italic_m ) = italic_m + 1,

nTngα(n)L2(𝒩)2superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(\mathcal{N})}^{2}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT=ν(n,mTngα(n)Tmgα(m))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=\nu\left(\sum_{n,m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n , italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
=ν(n<mTngα(n)Tmgα(m))+ν(nmTngα(n)Tmgα(m))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=\nu\left(\sum_{n<m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)+%\nu\left(\sum_{n\geq m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n < italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) + italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≥ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
(bythetracialpropertyofν)bythetracialpropertyof𝜈\displaystyle({\rm by\ the\ tracial\ property\ of}\ \nu)( roman_by roman_the roman_tracial roman_property roman_of italic_ν )=ν(n<mTngα(n)Tmgα(m))+ν(nmTmgα(m)Tngα(n))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚𝜈subscript𝑛𝑚subscript𝑇𝑚subscript𝑔𝛼𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛\displaystyle=\nu\left(\sum_{n<m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)+%\nu\left(\sum_{n\geq m}T_{m}g_{\alpha(m)}T_{n}g_{\alpha(n)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n < italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) + italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≥ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT )
=ν(n<mTngα(n)Tmgα(m))+ν(nmTngα(n)Tmgα(m))absent𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=\nu\left(\sum_{n<m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)+%\nu\left(\sum_{n\leq m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)= italic_ν ( ∑ start_POSTSUBSCRIPT italic_n < italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) + italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )

Note that ν(nTngα(n)Tngα(n))0𝜈subscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛0\nu\left(\sum_{n}T_{n}g_{\alpha(n)}T_{n}g_{\alpha(n)}\right)\geq 0italic_ν ( ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ) ≥ 0. So, we have that

nTngα(n)L2(𝒩)2superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(\mathcal{N})}^{2}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT2ν(nmTngα(n)Tmgα(m))absent2𝜈subscript𝑛𝑚subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle\leq 2\nu\left(\sum_{n\leq m}T_{n}g_{\alpha(n)}T_{m}g_{\alpha(m)}\right)≤ 2 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
=2ν(nmgα(n)TnTmgα(m))absent2𝜈subscript𝑛𝑚subscript𝑔𝛼𝑛subscript𝑇𝑛subscript𝑇𝑚subscript𝑔𝛼𝑚\displaystyle=2\nu\left(\sum_{n\leq m}g_{\alpha(n)}T_{n}T_{m}g_{\alpha(m)}\right)= 2 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
4ν(nmgα(n)Tσ(m)gα(m)).absent4𝜈subscript𝑛𝑚subscript𝑔𝛼𝑛subscript𝑇𝜎𝑚subscript𝑔𝛼𝑚\displaystyle\leq 4~{}\nu\left(\sum_{n\leq m}g_{\alpha(n)}T_{\sigma(m)}g_{%\alpha(m)}\right).≤ 4 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n ≤ italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) .

By the tracial property of ν𝜈\nuitalic_ν, we have that ν(ab)=ν(b12ab12)0𝜈𝑎𝑏𝜈superscript𝑏12𝑎superscript𝑏120\nu(ab)=\nu(b^{\frac{1}{2}}ab^{\frac{1}{2}})\geq 0italic_ν ( italic_a italic_b ) = italic_ν ( italic_b start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_a italic_b start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ) ≥ 0 for any a,b0𝑎𝑏0a,b\geq 0italic_a , italic_b ≥ 0. So

nTngα(n)L2(𝒩)2superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(\mathcal{N})}^{2}∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4ν(n,mgα(n)Tσ(m)gα(m))absent4𝜈subscript𝑛𝑚subscript𝑔𝛼𝑛subscript𝑇𝜎𝑚subscript𝑔𝛼𝑚\displaystyle\leq 4~{}\nu\left(\sum_{n,m}g_{\alpha(n)}T_{\sigma(m)}g_{\alpha(m%)}\right)≤ 4 italic_ν ( ∑ start_POSTSUBSCRIPT italic_n , italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT )
4ν((ngα(n))(mTσ(m)gα(m)))absent4𝜈subscript𝑛subscript𝑔𝛼𝑛subscript𝑚subscript𝑇𝜎𝑚subscript𝑔𝛼𝑚\displaystyle\leq 4~{}\nu\left(\left(\sum_{n}g_{\alpha(n)}\right)\left(\sum_{m%}T_{\sigma(m)}g_{\alpha(m)}\right)\right)≤ 4 italic_ν ( ( ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ) ( ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_σ ( italic_m ) end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) )
=4ν((ngn))(mTmgσ1α(m)))\displaystyle=4~{}\nu\left(\left(\sum_{n}g_{n})\right)\left(\sum_{m}T_{m}g_{%\sigma^{-1}\alpha(m)}\right)\right)= 4 italic_ν ( ( ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) ( ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ) )
4ngnL2(𝒩)mTmgσ1α(m)L2(𝒩).absent4subscriptnormsubscript𝑛subscript𝑔𝑛subscript𝐿2𝒩subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔superscript𝜎1𝛼𝑚subscript𝐿2𝒩\displaystyle\leq 4~{}\left\|\sum_{n}g_{n}\right\|_{L_{2}(\mathcal{N})}~{}%\left\|\sum_{m}T_{m}g_{\sigma^{-1}\alpha(m)}\right\|_{L_{2}(\mathcal{N})}.≤ 4 ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT .

Now, taking the supremum over all bijections α𝛼\alphaitalic_α on both sides, we get

supαnTngα(n)L2(𝒩)2subscriptsupremum𝛼superscriptsubscriptnormsubscript𝑛subscript𝑇𝑛subscript𝑔𝛼𝑛subscript𝐿2𝒩2\displaystyle\sup_{\alpha}\left\|\sum_{n}T_{n}g_{\alpha(n)}\right\|_{L_{2}(%\mathcal{N})}^{2}roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_n ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT4ngnL2(𝒩)supαmTmgσ1α(m)L2(𝒩)absent4subscriptnormsubscript𝑛subscript𝑔𝑛subscript𝐿2𝒩subscriptsupremum𝛼subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔superscript𝜎1𝛼𝑚subscript𝐿2𝒩\displaystyle\leq 4\left\|\sum_{n}g_{n}\right\|_{L_{2}(\mathcal{N})}\sup_{%\alpha}\left\|\sum_{m}T_{m}g_{\sigma^{-1}\alpha(m)}\right\|_{L_{2}(\mathcal{N})}≤ 4 ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT
=4ngnL2(𝒩)supαmTmgα(m)L2(𝒩)absent4subscriptnormsubscript𝑛subscript𝑔𝑛subscript𝐿2𝒩subscriptsupremum𝛼subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔𝛼𝑚subscript𝐿2𝒩\displaystyle=4\left\|\sum_{n}g_{n}\right\|_{L_{2}(\mathcal{N})}\sup_{\alpha}%\left\|\sum_{m}T_{m}g_{\alpha(m)}\right\|_{L_{2}(\mathcal{N})}= 4 ∥ ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT

By dividing the finite number supαmTmgα(m)L2(𝒩)subscriptsupremum𝛼subscriptnormsubscript𝑚subscript𝑇𝑚subscript𝑔𝛼𝑚subscript𝐿2𝒩\sup_{\alpha}\|\sum_{m}T_{m}g_{\alpha(m)}\|_{L_{2}(\mathcal{N})}roman_sup start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_α ( italic_m ) end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT on both sides, we get (3.2).∎

Note that {Tn}nsubscriptsubscript𝑇𝑛𝑛\{T_{n}\}_{n\in\mathbb{Z}}{ italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT is a family of positive-preserving contractions on L1(𝒩)subscript𝐿1𝒩L_{1}(\mathcal{N})italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( caligraphic_N ). Lemma 3.2 holds trivially if we replace L2()subscript𝐿2L_{2}({\mathbb{N}})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_N ) with L1()subscript𝐿1L_{1}({\mathbb{N}})italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_N ). We show that this remains true if we replace L2()subscript𝐿2L_{2}({\mathbb{N}})italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_N ) with Lp()subscript𝐿𝑝L_{p}({\mathbb{N}})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ) for all 1<p<21𝑝21<p<21 < italic_p < 2.We need the following Cauchy-Schwartz inequality. We include a proof for completeness.

Lemma 3.3.

Suppose anLq(𝒩,ν),bnLr(𝒩,ν)formulae-sequencesubscript𝑎𝑛subscript𝐿𝑞𝒩𝜈subscript𝑏𝑛subscript𝐿𝑟𝒩𝜈a_{n}\in L_{q}(\mathcal{N},\nu),b_{n}\in L_{r}(\mathcal{N},\nu)italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_N , italic_ν ) , italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( caligraphic_N , italic_ν ). Then,we have

(3.3)n=1NTn(anbn)pn=1NTn(anan)qn=1NTn(bnbn)r.subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛𝑞subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛𝑟\left\|\sum_{n=1}^{N}T_{n}(a_{n}^{*}b_{n})\right\|_{p}\leq\left\|\sum_{n=1}^{N%}T_{n}(a_{n}^{*}a_{n})\right\|_{q}~{}\left\|\sum_{n=1}^{N}T_{n}(b_{n}^{*}b_{n}%)\right\|_{r}.∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT .

In particular,

(3.4)n=1NTn(anbn)pn=1NTn(anan)pn=1NTn(bnbn)p.subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛𝑝\left\|\sum_{n=1}^{N}T_{n}(a_{n}^{*}b_{n})\right\|_{p}\leq\left\|\sum_{n=1}^{N%}T_{n}(a_{n}^{*}a_{n})\right\|_{p}~{}\left\|\sum_{n=1}^{N}T_{n}(b_{n}^{*}b_{n}%)\right\|_{p}.∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT .
Proof.

Let Xn=(anbn00)subscript𝑋𝑛matrixsubscript𝑎𝑛subscript𝑏𝑛00X_{n}=\begin{pmatrix}a_{n}&b_{n}\\0&0\end{pmatrix}italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ). Then we have

XnXn=(anananbnbnanbnbn).superscriptsubscript𝑋𝑛subscript𝑋𝑛matrixsuperscriptsubscript𝑎𝑛subscript𝑎𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑏𝑛subscript𝑎𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛X_{n}^{*}X_{n}=\begin{pmatrix}a_{n}^{*}a_{n}&a_{n}^{*}b_{n}\\b_{n}^{*}a_{n}&b_{n}^{*}b_{n}\end{pmatrix}.italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ) .

This implies that

(n=1NTn(anan)n=1NTn(anbn)n=1NTn(ban)n=1NTn(bnbn))=(αγγβ)0.matrixsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑎𝑛superscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛superscriptsubscript𝑛1𝑁subscript𝑇𝑛superscript𝑏subscript𝑎𝑛superscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑏𝑛subscript𝑏𝑛matrix𝛼𝛾superscript𝛾𝛽0\begin{pmatrix}\sum_{n=1}^{N}T_{n}(a_{n}^{*}a_{n})&\sum_{n=1}^{N}T_{n}(a_{n}^{%*}b_{n})\\\sum_{n=1}^{N}T_{n}(b^{*}a_{n})&\sum_{n=1}^{N}T_{n}(b_{n}^{*}b_{n})\end{%pmatrix}=\begin{pmatrix}\alpha&\gamma\\\gamma^{*}&\beta\end{pmatrix}\geq 0.( start_ARG start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ) = ( start_ARG start_ROW start_CELL italic_α end_CELL start_CELL italic_γ end_CELL end_ROW start_ROW start_CELL italic_γ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_CELL start_CELL italic_β end_CELL end_ROW end_ARG ) ≥ 0 .

Then, by [1, Prop. 1.3.2], there exists a contraction y𝑦yitalic_y such that γ=α12yβ12𝛾superscript𝛼12𝑦superscript𝛽12\gamma=\alpha^{\frac{1}{2}}y\beta^{\frac{1}{2}}italic_γ = italic_α start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_y italic_β start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT.Thus by Hölder’s inequality,

n=1NTn(anbn)p=γp=α12yβ12pα12qβ12r.subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑎𝑛subscript𝑏𝑛𝑝subscriptnorm𝛾𝑝subscriptnormsuperscript𝛼12𝑦superscript𝛽12𝑝subscriptnormsuperscript𝛼12𝑞subscriptnormsuperscript𝛽12𝑟\left\|\sum_{n=1}^{N}T_{n}(a_{n}^{*}b_{n})\right\|_{p}=\|\gamma\|_{p}=\|\alpha%^{\frac{1}{2}}y\beta^{\frac{1}{2}}\|_{p}\leq\|\alpha^{\frac{1}{2}}\|_{q}\|%\beta^{\frac{1}{2}}\|_{r}.∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ∥ italic_γ ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ∥ italic_α start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_y italic_β start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ ∥ italic_α start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ∥ italic_β start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT .

The lemma is proved.∎

Lemma 3.4.

Under the same assumption of Lemma 3.2, we have that,

(3.5)(Tngn)Lp(𝒩;1)422p(gn)Lp(𝒩;1).subscriptnormsubscript𝑇𝑛subscript𝑔𝑛subscript𝐿𝑝𝒩subscript1superscript422𝑝subscriptnormsubscript𝑔𝑛subscript𝐿𝑝𝒩subscript1\|(T_{n}g_{n})\|_{L_{p}(\mathcal{N};\ell_{1})}\leq 4^{2-\frac{2}{p}}\|(g_{n})%\|_{L_{p}(\mathcal{N};\ell_{1})}.∥ ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 4 start_POSTSUPERSCRIPT 2 - divide start_ARG 2 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ∥ ( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT .

for all finite sequences (gn)Lp(𝒩;1)subscript𝑔𝑛subscript𝐿𝑝𝒩subscript1(g_{n})\in L_{p}(\mathcal{N};\ell_{1})( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), gn0subscript𝑔𝑛0g_{n}\geq 0italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0, 1p21𝑝21\leq p\leq 21 ≤ italic_p ≤ 2.

Proof.

Assume that n=1Ngnp=1subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑔𝑛𝑝1\|\sum_{n=1}^{N}~{}g_{n}\|_{p}=1∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 1. Let g=(n=1Ngn)1/2𝑔superscriptsuperscriptsubscript𝑛1𝑁subscript𝑔𝑛12g=\left(\sum_{n=1}^{N}g_{n}\right)^{1/2}italic_g = ( ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT. We then have g2p=1.subscriptnorm𝑔2𝑝1\|g\|_{2p}=1.∥ italic_g ∥ start_POSTSUBSCRIPT 2 italic_p end_POSTSUBSCRIPT = 1 . By approximation, we may assume g𝑔gitalic_g is invertible.Let hn=g1gng10subscript𝑛superscript𝑔1subscript𝑔𝑛superscript𝑔10h_{n}=g^{-1}g_{n}g^{-1}\geq 0italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ≥ 0. Then, n=1Nhn1subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑛1\|\sum_{n=1}^{N}h_{n}\|_{\infty}\leq 1∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ≤ 1. Let θ𝜃\thetaitalic_θ be defined by 1p=1θ1+θ21𝑝1𝜃1𝜃2\frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{2}divide start_ARG 1 end_ARG start_ARG italic_p end_ARG = divide start_ARG 1 - italic_θ end_ARG start_ARG 1 end_ARG + divide start_ARG italic_θ end_ARG start_ARG 2 end_ARG. Let

F(z)=g(1z)p+zp/2hng(1z)p+zp/2𝐹𝑧superscript𝑔1𝑧𝑝𝑧𝑝2subscript𝑛superscript𝑔1𝑧𝑝𝑧𝑝2F(z)=g^{(1-z)p+zp/2}h_{n}g^{(1-z)p+zp/2}italic_F ( italic_z ) = italic_g start_POSTSUPERSCRIPT ( 1 - italic_z ) italic_p + italic_z italic_p / 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT ( 1 - italic_z ) italic_p + italic_z italic_p / 2 end_POSTSUPERSCRIPT

and Ut=gipt/2subscript𝑈𝑡superscript𝑔𝑖𝑝𝑡2U_{t}=g^{-ipt/2}italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_g start_POSTSUPERSCRIPT - italic_i italic_p italic_t / 2 end_POSTSUPERSCRIPT. Note that F(θ)=gn𝐹𝜃subscript𝑔𝑛F(\theta)=g_{n}italic_F ( italic_θ ) = italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and F(it)=UtgphngpUt𝐹𝑖𝑡subscript𝑈𝑡superscript𝑔𝑝subscript𝑛superscript𝑔𝑝subscript𝑈𝑡F(it)=U_{t}g^{p}h_{n}g^{p}U_{t}italic_F ( italic_i italic_t ) = italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, F(1+it)=Utgp/2hngp/2Ut𝐹1𝑖𝑡subscript𝑈𝑡superscript𝑔𝑝2subscript𝑛superscript𝑔𝑝2subscript𝑈𝑡F(1+it)=U_{t}g^{p/2}h_{n}g^{p/2}U_{t}italic_F ( 1 + italic_i italic_t ) = italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.Therefore,

n=1NTnF(it)1subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛𝐹𝑖𝑡1\displaystyle\left\|\sum_{n=1}^{N}T_{n}F(it)\right\|_{1}∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_F ( italic_i italic_t ) ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPTn=1NTnF(it)1n=1NF(it)1n=1Ngphngp1absentsuperscriptsubscript𝑛1𝑁subscriptnormsubscript𝑇𝑛𝐹𝑖𝑡1superscriptsubscript𝑛1𝑁subscriptnorm𝐹𝑖𝑡1superscriptsubscript𝑛1𝑁subscriptnormsuperscript𝑔𝑝subscript𝑛superscript𝑔𝑝1\displaystyle\leq\sum_{n=1}^{N}\left\|T_{n}F(it)\right\|_{1}\leq\sum_{n=1}^{N}%\left\|F(it)\right\|_{1}\leq\sum_{n=1}^{N}\|g^{p}h_{n}g^{p}\|_{1}≤ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ∥ italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_F ( italic_i italic_t ) ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ∥ italic_F ( italic_i italic_t ) ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ∥ italic_g start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT
=ν(gpn=1Nhngp)absent𝜈superscript𝑔𝑝superscriptsubscript𝑛1𝑁subscript𝑛superscript𝑔𝑝\displaystyle=\nu\left(g^{p}\sum_{n=1}^{N}h_{n}~{}g^{p}\right)= italic_ν ( italic_g start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT )
(3.6)ν(g2p)=1.absent𝜈superscript𝑔2𝑝1\displaystyle\leq\nu(g^{2p})=1.≤ italic_ν ( italic_g start_POSTSUPERSCRIPT 2 italic_p end_POSTSUPERSCRIPT ) = 1 .

On the other hand, applying Lemma 3.3 to an=Utgp2hn12,bn=hn12gp2Utformulae-sequencesuperscriptsubscript𝑎𝑛subscript𝑈𝑡superscript𝑔𝑝2superscriptsubscript𝑛12subscript𝑏𝑛superscriptsubscript𝑛12superscript𝑔𝑝2subscript𝑈𝑡a_{n}^{*}=U_{t}g^{\frac{p}{2}}h_{n}^{\frac{1}{2}},b_{n}=h_{n}^{\frac{1}{2}}g^{%\frac{p}{2}}U_{t}italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT divide start_ARG italic_p end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT , italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_g start_POSTSUPERSCRIPT divide start_ARG italic_p end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT

n=1NTnF(1+it)2=n=1NTn(Utgp2hn12hn12ap2Ut)2subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛𝐹1𝑖𝑡2subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛subscript𝑈𝑡superscript𝑔𝑝2superscriptsubscript𝑛12superscriptsubscript𝑛12superscript𝑎𝑝2subscript𝑈𝑡2\displaystyle\left\|\sum_{n=1}^{N}T_{n}F(1+it)\right\|_{2}=\left\|\sum_{n=1}^{%N}~{}T_{n}\left(U_{t}g^{\frac{p}{2}}h_{n}^{\frac{1}{2}}h_{n}^{\frac{1}{2}}a^{%\frac{p}{2}}U_{t}\right)\right\|_{2}∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_F ( 1 + italic_i italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT divide start_ARG italic_p end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT divide start_ARG italic_p end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT
n=1NTn(Utgp/2hn1/2hn1/2gg/2Ut)212n=1NTn(Utap/2hn1/2hn12gp/2Ut)212absentsuperscriptsubscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛subscript𝑈𝑡superscript𝑔𝑝2superscriptsubscript𝑛12superscriptsubscript𝑛12superscript𝑔𝑔2superscriptsubscript𝑈𝑡212superscriptsubscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛superscriptsubscript𝑈𝑡superscript𝑎𝑝2superscriptsubscript𝑛12superscriptsubscript𝑛12superscript𝑔𝑝2subscript𝑈𝑡212\displaystyle\leq\left\|\sum_{n=1}^{N}T_{n}\left(U_{t}g^{p/2}h_{n}^{1/2}h_{n}^%{1/2}g^{g/2}U_{t}^{*}\right)\right\|_{2}^{\frac{1}{2}}\left\|\sum_{n=1}^{N}T_{%n}\left(U_{t}^{*}a^{p/2}h_{n}^{1/2}h_{n}^{\frac{1}{2}g^{p/2}}U_{t}\right)%\right\|_{2}^{\frac{1}{2}}≤ ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_g start_POSTSUPERSCRIPT italic_g / 2 end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT
4Ut(gp/2n=1Nhngp/2)Ut212Ut(gp/2n=1Nhngp/2)Ut212absent4superscriptsubscriptnormsubscript𝑈𝑡superscript𝑔𝑝2superscriptsubscript𝑛1𝑁subscript𝑛superscript𝑔𝑝2superscriptsubscript𝑈𝑡212superscriptsubscriptnormsuperscriptsubscript𝑈𝑡superscript𝑔𝑝2superscriptsubscript𝑛1𝑁subscript𝑛superscript𝑔𝑝2subscript𝑈𝑡212\displaystyle\leq 4\left\|U_{t}\left(g^{p/2}\sum_{n=1}^{N}~{}h_{n}~{}g^{p/2}%\right)U_{t}^{*}\right\|_{2}^{\frac{1}{2}}\left\|U_{t}^{*}\left(g^{p/2}\sum_{n%=1}^{N}~{}h_{n}~{}g^{p/2}\right)U_{t}\right\|_{2}^{\frac{1}{2}}≤ 4 ∥ italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT ) italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ∥ italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT italic_p / 2 end_POSTSUPERSCRIPT ) italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT
(3.7)4gp2=4.absent4subscriptnormsuperscript𝑔𝑝24\displaystyle\leq 4\|g^{p}\|_{2}=4.≤ 4 ∥ italic_g start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 4 .

Then, by the three line lemma, we have

n=1NTngnp=n=1NTnF(θ)p4θ.subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛subscript𝑔𝑛𝑝subscriptnormsuperscriptsubscript𝑛1𝑁subscript𝑇𝑛𝐹𝜃𝑝superscript4𝜃\left\|\sum_{n=1}^{N}T_{n}g_{n}\right\|_{p}=\left\|\sum_{n=1}^{N}~{}T_{n}F(%\theta)\right\|_{p}\leq 4^{\theta}.∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = ∥ ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_F ( italic_θ ) ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≤ 4 start_POSTSUPERSCRIPT italic_θ end_POSTSUPERSCRIPT .

We complete the proof by applying the hom*ogeneity property.∎

Finally, we return to the proof of Theorem 3.1 by duality.

Proof.

For fLp()𝑓subscript𝐿𝑝f\in L_{p}({\mathbb{N}})italic_f ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ), we have that |f|Lp()𝑓subscript𝐿𝑝|f|\in L_{p}({\mathbb{N}})| italic_f | ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ) and |f|𝑓|f|| italic_f | has the same norm with f𝑓fitalic_f by definition.We apply (2.13) to the positive sequence in Lp()subscript𝐿𝑝L_{p}({\mathbb{N}})italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N )Tn(|f|)subscript𝑇𝑛𝑓T_{n}(|f|)italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( | italic_f | ), and obtain

(Tn(|f|))Lp(𝒩;)subscriptnormsubscript𝑇𝑛𝑓subscript𝐿𝑝𝒩subscript\displaystyle\|(T_{n}(|f|))\|_{L_{p}(\mathcal{N};\ell_{\infty})}∥ ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( | italic_f | ) ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT=sup{ν(Tn(|f|)yn):yn0,(yn)Lq(𝒩;1N)1}\displaystyle=\sup\left\{\nu\left(\sum T_{n}(|f|)y_{n}\right):y_{n}\geq 0,\|(y%_{n})\|_{L_{q}(\mathcal{N};\ell_{1}^{N})}\leq 1\right\}= roman_sup { italic_ν ( ∑ italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( | italic_f | ) italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) : italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 , ∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 }
=sup{ν(|f|Tn(yn)):yn0,(yn)Lq(𝒩;1N)1}\displaystyle=\sup\left\{\nu\left(\sum|f|T_{n}(y_{n})\right):y_{n}\geq 0,\|(y_%{n})\|_{L_{q}(\mathcal{N};\ell_{1}^{N})}\leq 1\right\}= roman_sup { italic_ν ( ∑ | italic_f | italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) : italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 , ∥ ( italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 1 }
sup{ν(|f|Tnyn):zn0,(zn)Lq(𝒩;1N)422q}\displaystyle\leq\sup\left\{\nu\left(|f|\sum T_{n}y_{n}\right):z_{n}\geq 0,\|(%z_{n})\|_{L_{q}(\mathcal{N};\ell_{1}^{N})}\leq 4^{2-\frac{2}{q}}\right\}≤ roman_sup { italic_ν ( | italic_f | ∑ italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) : italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≥ 0 , ∥ ( italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT ≤ 4 start_POSTSUPERSCRIPT 2 - divide start_ARG 2 end_ARG start_ARG italic_q end_ARG end_POSTSUPERSCRIPT }
42pfLp(𝒩),absentsuperscript42𝑝subscriptnorm𝑓subscript𝐿𝑝𝒩\displaystyle\leq 4^{\frac{2}{p}}\|f\|_{L_{p}(\mathcal{N})},≤ 4 start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT ,

for all 2p<2𝑝2\leq p<\infty2 ≤ italic_p < ∞. By (2.11), (Tn(|f|))Lp(𝒩;)41+2pfLp(𝒩)subscriptnormsubscript𝑇𝑛𝑓subscript𝐿𝑝𝒩subscriptsuperscript412𝑝subscriptnorm𝑓subscript𝐿𝑝𝒩\|(T_{n}(|f|))\|_{L_{p}(\mathcal{N};\ell_{\infty})}\leq 4^{1+\frac{2}{p}}\|f\|%_{L_{p}(\mathcal{N})}∥ ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( | italic_f | ) ) ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ; roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ≤ 4 start_POSTSUPERSCRIPT 1 + divide start_ARG 2 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT. By definition (2.4), This means that there exists FLp()𝐹subscript𝐿𝑝F\in L_{p}({\mathbb{N}})italic_F ∈ italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ) such that FLp()41+2pfLp(𝒩)subscriptnorm𝐹subscript𝐿𝑝superscript412𝑝subscriptnorm𝑓subscript𝐿𝑝𝒩\|F\|_{L_{p}({\mathbb{N}})}\leq 4^{1+\frac{2}{p}}\|f\|_{L_{p}(\mathcal{N})}∥ italic_F ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( blackboard_N ) end_POSTSUBSCRIPT ≤ 4 start_POSTSUPERSCRIPT 1 + divide start_ARG 2 end_ARG start_ARG italic_p end_ARG end_POSTSUPERSCRIPT ∥ italic_f ∥ start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( caligraphic_N ) end_POSTSUBSCRIPT and Tn|f|Fsubscript𝑇𝑛𝑓𝐹T_{n}|f|\leq Fitalic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | italic_f | ≤ italic_F. Theorem 3.1 follows since

12txtx+t|f(y)|𝑑y2Tn|f|12𝑡superscriptsubscript𝑥𝑡𝑥𝑡𝑓𝑦differential-d𝑦2subscript𝑇𝑛𝑓\frac{1}{2t}\int_{x-t}^{x+t}|f(y)|dy\leq 2T_{n}|f|divide start_ARG 1 end_ARG start_ARG 2 italic_t end_ARG ∫ start_POSTSUBSCRIPT italic_x - italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x + italic_t end_POSTSUPERSCRIPT | italic_f ( italic_y ) | italic_d italic_y ≤ 2 italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | italic_f |

for every 2n1t<2n,nformulae-sequencesuperscript2𝑛1𝑡superscript2𝑛𝑛2^{n-1}\leq t<2^{n},n\in\mathbb{Z}2 start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ≤ italic_t < 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_n ∈ blackboard_Z.∎

References

  • [1] R. Bhatia, Positive definite matrices,Princeton Ser. Appl. Math.Princeton University Press, Princeton, NJ, 2007, x+254 pp.
  • [2]Z. Chen, Q. Xu, Z. Yin, Harmonic analysis on quantum tori,Comm. Math. Phys. 322 (2013), no. 3, 755-805.
  • [3]G. Hong, The behavior of the bounds of matrix-valued maximal inequality in nsuperscript𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT for large n𝑛nitalic_n,Illinois J. Math. 57 (2013), no. 3, 855-869.
  • [4]G. Hong, B. Liao, S. Wang, Noncommutative maximal ergodic inequalities associated with doubling conditionsDuke Math. J. 170 (2021), no. 2, 205-246.
  • [5] M. Junge, Doob’s Inequality for noncommutative Martingales, J. Reine Angew. Math. 549 (2002), 149-190. MR1916654
  • [6] M. Junge, Q. Xu, Noncommutative maximal ergodic theorems.J. Amer. Math. Soc.20(2007), no.2, 385-439.
  • [7]T. Mei, Operator valued Hardy spaces. Mem. Amer. Math. Soc. 188 (2007), 64 pp.
  • [8] Fourier multipliers in SLn()𝑆subscript𝐿𝑛SL_{n}(\mathbb{R})italic_S italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_R ),J. Parcet, E. Ricard, M. de la Salle, Duke Math. J. 171 (2022), no. 6, 1235-1297.
  • [9] G. Pisier, noncommutative Vector Valued Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-Spaces and Completely p-Summing Maps, Soc. Math. France Astérisque (1998) 237. MR1648908
  • [10] G. Pisier, Martingales in Non-Commutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces, unpublished manuscript.
  • [11] G. Pisier, Q. Xu, Non-commutative Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces. In Handbook of the geometry of Banach spaces, Vol. 2, pages 1459–1517. North-Holland, Amsterdam, 2003. MR1999201
  • [12] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, New Jersey, 1993. MR1232192
A Direct Proof for Operator Hardy-Littlewood Maximal Inequality (2024)

FAQs

What is the best constant for the centered Hardy-Littlewood maximal inequality? ›

We find the exact value of the best possible constant C for the weak-type (1,1) inequality for the one-dimensional centered Hardy-Littlewood maximal operator. We prove that C is the largest root of the quadratic equation 12C2 − 22C + 5 = 0 thus obtaining C = 1. 5675208... .

What is the Hardy and Littlewood theorem? ›

. The integral formulation of the theorem relates in an analogous manner the asymptotics of the cumulative distribution function of a function with the asymptotics of its Laplace transform. The theorem was proved in 1914 by G. H.

Is the Hardy-Littlewood maximal function continuous? ›

the non-centered Hardy-Littlewood maximal function Mf and the centered Hardy-Littlewood maximal function Mcf on Rn. As two applications, we can easily deduce that Mcf and Mf are continuous if f is continuous, and Mf is continuous if f is of local bounded variation on R.

Is Hardy-Littlewood maximal function bounded? ›

Our main theorem is that the Hardy–Littlewood maximal operator is bounded in the Sobolev space W1,p(Rn) for 1 < p ≤ ∞ and hence, in that case, it has classical partial derivatives almost everywhere.

What is the Littlewood constant? ›

For a prime constellation, the Hardy-Littlewood constant for that constellation is the coefficient of the leading term of the (conjectured) asymptotic estimate of its frequency. It is given by a particular product over all primes.

What are the applications of Hardy Littlewood maximal function? ›

Applications. The Hardy–Littlewood maximal operator appears in many places but some of its most notable uses are in the proofs of the Lebesgue differentiation theorem and Fatou's theorem and in the theory of singular integral operators.

What is the Hardy Littlewood rule? ›

In mathematics, the Hardy-Littlewood rule is used. That is, authors are alphabetically ordered and everyone gets an equal share of credit independent to their actual contribu- tion.

What is Hardy and Littlewood number theory? ›

In number theory, the first Hardy–Littlewood conjecture states the asymptotic formula for the number of prime k-tuples less than a given magnitude by generalizing the prime number theorem. It was first proposed by G. H. Hardy and John Edensor Littlewood in 1923.

Is Hardy Littlewood maximal function measurable? ›

The averages are jointly continuous in x and r, so the maximal function Mf, being the supremum over r > 0, is measurable. It is not obvious that Mf is finite almost everywhere. This is a corollary of the Hardy–Littlewood maximal inequality.

How do you argue a function is continuous? ›

Key Concepts
  1. For a function to be continuous at a point, it must be defined at that point, its limit must exist at the point, and the value of the function at that point must equal the value of the limit at that point.
  2. Discontinuities may be classified as removable, jump, or infinite.
Dec 20, 2020

What are the famous continuous functions? ›

Some Typical Continuous Functions
  • Trigonometric Functions in certain periodic intervals (sin x, cos x, tan x etc.)
  • Polynomial Functions (x2 +x +1, x4 + 2…. etc.)
  • Exponential Functions (e2x, 5ex etc.)
  • Logarithmic Functions in their domain (log10x, ln x2 etc.)

Are all holomorphic functions continuous? ›

If there exists a holomorphic function F defined on Ω such that F0 = f, we say that F is a primitive of f. If f is holomorphic in all of C then f is said to be entire. Like in real variable theory we find that f is continuous on an open set Ω if it is holomorphic on Ω.

What are the famous bounded functions? ›

sin(x) , cos(x) , arctan(x)=tan−1(x) , 11+x2 , and 11+ex are all commonly used examples of bounded functions.

How do you know if a function is bounded? ›

We say that a real function f is bounded from below if there is a number k such that for all x from the domain D( f ) one has f (x) ≥ k. We say that a real function f is bounded from above if there is a number K such that for all x from the domain D( f ) one has f (x) ≤ K.

What functions are not bounded? ›

Unbounded function: A function is unbounded if there exists a real number , such that lim x → a − | f ( x ) | = ∞ , or lim x → a + | f ( x ) | = ∞ , or lim x → − ∞ | f ( x ) | = ∞ or lim x → ∞ | f ( x ) | = ∞ .

What is the optimal constant for Poincare inequality? ›

The best constant of Poincare inequality can be determined by eigenvalue of Laplace operator. over the admissible set M:={u∈H10(Ω)‖u‖L2(Ω)=1}. Then by Rayleigh Quotient theorem we have α=λ1 where λ1 is the first eigenvalue of laplace operator −Δ. Hence the best constant of Poincare inequality is just 1/λ1?

What is the best constant in the Davis inequality for the expectation of the martingale square function? ›

Here we prove that √ 3 is the best constant by using an entirely different approach.

What is Hardy and Littlewood conjecture F? ›

In number theory, the first Hardy–Littlewood conjecture states the asymptotic formula for the number of prime k-tuples less than a given magnitude by generalizing the prime number theorem. It was first proposed by G. H. Hardy and John Edensor Littlewood in 1923.

What is a maximal inequality? ›

In probability theory, Kolmogorov's inequality is a so-called "maximal inequality" that gives a bound on the probability that the partial sums of a finite collection of independent random variables exceed some specified bound.

Top Articles
Off the Grid: Sally breaks down USA TODAY's daily crossword, But Daddy I Love Crosswords
2022 Subaru Forester Wilderness Chandler AZ | Subaru Superstore of Chandler JF2SKAMC1NH519565
Spasa Parish
Rentals for rent in Maastricht
159R Bus Schedule Pdf
Sallisaw Bin Store
Black Adam Showtimes Near Maya Cinemas Delano
Espn Transfer Portal Basketball
Pollen Levels Richmond
11 Best Sites Like The Chive For Funny Pictures and Memes
Things to do in Wichita Falls on weekends 12-15 September
Craigslist Pets Huntsville Alabama
Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
What's the Difference Between Halal and Haram Meat & Food?
R/Skinwalker
Rugged Gentleman Barber Shop Martinsburg Wv
Jennifer Lenzini Leaving Ktiv
Justified - Streams, Episodenguide und News zur Serie
Epay. Medstarhealth.org
Olde Kegg Bar & Grill Portage Menu
Cubilabras
Half Inning In Which The Home Team Bats Crossword
Amazing Lash Bay Colony
Juego Friv Poki
Dirt Devil Ud70181 Parts Diagram
Truist Bank Open Saturday
Water Leaks in Your Car When It Rains? Common Causes & Fixes
What’s Closing at Disney World? A Complete Guide
New from Simply So Good - Cherry Apricot Slab Pie
Drys Pharmacy
Ohio State Football Wiki
FirstLight Power to Acquire Leading Canadian Renewable Operator and Developer Hydromega Services Inc. - FirstLight
Webmail.unt.edu
2024-25 ITH Season Preview: USC Trojans
Metro By T Mobile Sign In
Restored Republic December 1 2022
12 30 Pacific Time
Jami Lafay Gofundme
Litter-Robot 3 Pinch Contact & Dfi Kit
Greenbrier Bunker Tour Coupon
No Compromise in Maneuverability and Effectiveness
Black Adam Showtimes Near Cinemark Texarkana 14
Teamnet O'reilly Login
Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sämtliche Pedelecs stark im Preis - nur noch für kurze Zeit
Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
Infinity Pool Showtimes Near Maya Cinemas Bakersfield
Hooda Math—Games, Features, and Benefits — Mashup Math
Dermpathdiagnostics Com Pay Invoice
How To Use Price Chopper Points At Quiktrip
Maria Butina Bikini
Busted Newspaper Zapata Tx
Latest Posts
Article information

Author: Saturnina Altenwerth DVM

Last Updated:

Views: 6127

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Saturnina Altenwerth DVM

Birthday: 1992-08-21

Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

Phone: +331850833384

Job: District Real-Estate Architect

Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.